
Trace Typing: An Approach for Evaluating
Retrofitted Type Systems (Extended Version)
Esben Andreasen1, Colin S. Gordon2, Satish Chandra3, Manu
Sridharan3, Frank Tip3, and Koushik Sen4

1 Aarhus University
esbena@cs.au.dk

2 Drexel University
csgordon@cs.drexel.edu

3 Samsung Research America
{schandra,m.sridharan,ftip}@samsung.com

4 UC Berkeley
ksen@berkeley.edu

Abstract
Recent years have seen growing interest in the retrofitting of type systems onto dynamically-
typed programming languages, in order to improve type safety, programmer productivity, or
performance. In such cases, type system developers must strike a delicate balance between
disallowing certain coding patterns to keep the type system simple, or including them at the
expense of additional complexity and effort. Thus far, the process for designing retrofitted type
systems has been largely ad hoc, because evaluating multiple variations of a type system on large
bodies of existing code is a significant undertaking.

We present trace typing: a framework for automatically and quantitatively evaluating vari-
ations of a retrofitted type system on large code bases. The trace typing approach involves
gathering traces of program executions, inferring types for instances of variables and expres-
sions occurring in a trace, and merging types according to merge strategies that reflect specific
(combinations of) choices in the source-level type system design space.

We evaluated trace typing through several experiments. We compared several variations of
type systems retrofitted onto JavaScript, measuring the number of program locations with type
errors in each case on a suite of over fifty thousand lines of JavaScript code. We also used trace
typing to validate and guide the design of a new retrofitted type system that enforces fixed
object layout for JavaScript objects. Finally, we leveraged the types computed by trace typing
to automatically identify tag tests — dynamic checks that refine a type — and examined the
variety of tests identified.

1998 ACM Subject Classification F.3.3 Studies of Program Constructs

Keywords and phrases Retrofitted type systems, Type system design, trace typing

1 Introduction

In recent years, there have been a number of efforts to retrofit [20] type systems onto
dynamically-typed languages, to aid developer productivity, correctness, and performance.
These languages are of increasing importance, primarily due to their common use in web
applications on both the client and server side. As more large-scale, complex programs are
written in such languages, greater need arises for static types, due to the resulting benefits
for static error checking, developer tools, and performance. Recent high-profile projects in
type system retrofitting include Closure [15], TypeScript [4] and Flow for JavaScript [12],

© Esben Andreasen, Colin S. Gordon, Satish Chandra, Manu Sridharan, Frank Tip, Koushik Sen;
licensed under Creative Commons License CC-BY

Samsung Research America Technical Report SRA-CSIC-2016-001.
This is an extended version of a paper published in ECOOP 2016.

http://creativecommons.org/licenses/by/3.0/

2 Trace Typing: An Approach for Evaluating Retrofitted Type Systems (Extended Version)

and Hack for PHP [31]. Given the proliferation of dynamically-typed languages, there are
many retrofitted type systems ahead.

The key questions in the design of these type systems involve selecting which features to
include. Richer features may allow more coding patterns to be understood and validated
by the type checker. However, richer type systems come at the cost of greater complexity
and implementation effort, and it is rarely a priori obvious whether a given feature’s benefit
outweighs its implementation burden. Hence, great care must be taken in deciding if a
particular type system feature is worthy of inclusion. Such decision points continue to arise
as a type system evolves: e.g., TypeScript recently added union types [28], and Flow recently
added bounded polymorphism [7].

When retrofitting a type system, there is generally a wealth of existing code to which
one would like to introduce types. When considering a type system feature, it would
be very helpful to know how useful the feature would be for typing an existing body of
code. Unfortunately, truly gauging the feature’s usefulness would require implementing type
checking (and possibly inference) for the feature and adding the necessary annotations to the
code base. This involves a significant effort, which ultimately may not have lasting value if an
alternate type system proves to be more suitable. Some previous work [3, 11, 20, 22] reduces
the first burden by providing a reusable framework for implementing type systems, with some
inference. However, each still requires manual annotation, so large-scale evaluation remains
a substantial undertaking — in one case an expert required over 17 hours to annotate part
of one program with type qualifiers [16]. For this reason, in current practice, decisions are
often made based on intuition and anecdotal evidence, without the aid of carefully collected
quantitative results on the impact of certain features. Anecdotes and other qualitative criteria
may validate inclusion of features that are rarely used but important, but quantitative results
on a large corpus can rapidly guide the high level design.

In this work, we propose a novel framework, called trace typing, for automatic and
quantitative evaluation of retrofitted type system features for existing code bases. Our system
works by collecting detailed, unrolled traces of dynamic executions of the code in question.
Evaluating a type system feature then requires implementing type checking and inference for
the unrolled trace, and also defining a merge strategy (explained shortly) for combining the
types of different occurrences of a variable in the trace into the corresponding static program
entity. The crucial observation here is that type checking and effective inference for the
unrolled trace is far simpler than static type checking / inference for the full source language,
and requires no type annotations due to the simplicity of the trace format. Hence, our system
dramatically reduces the implementation effort required to perform quantitative comparisons
of different type system variants, and allows type system designers to automatically gather
feedback from large code bases by typing the trace.

While type inference and checking for unrolled traces is simpler to implement than a
static type checker, the ultimate goal of the designer is a type system for source programs,
not traces. Our key insight is that–given types for the unrolled trace–many source type
systems can be expressed via a family of merge operations, used to merge the types of runtime
entities that the source type system cannot distinguish. For example, a merge operator can
control whether assigning an integer and an object into the same variable yields a union
type for the variable, or a type error. (We give examples of merging throughout the paper.)
The type errors found by using merged types give an indicative lower bound on the set
of program locations that would be ill-typed under a static type checker, as long as the
merge operator produces useful types. A designer can, therefore, evaluate the usefulness of a
proposed static type system via suitable merge operators in the trace typing framework, and

E. Andreasen et al. 3

can also compare the relative power of different static type systems.
We have implemented our techniques in a system for evaluating type system variants for

JavaScript. We evaluated our system on a diverse suite of programs, and evaluated several
different variations on a core object-oriented type system. In particular, our experiments
yielded quantitative answers to the following questions for our benchmarks:

How pervasive is the need for supporting union types on top of a type system that
supports subtyping?
If union types are supported, what kind of “tag tests” usually occur to discriminate
between branches of a union?
How pervasive is the need for supporting parametric polymorphism?
How pervasive is the need for intersection types for functions?

The results are given in Section 6. We believe trace typing gives a quick and easy way to
obtain answers to these (and similar) questions on a given code corpus.

We have also used trace typing to guide the design of a type system to support ahead-
of-time compilation of JavaScript extending previous work [8]. Trace typing allowed us
to validate some of our design choices without implementing a type inference engine that
works on real code. Moreover, it helped point to where we need to extend the type system.
Section 6.4 details this case study.

Trace typing is designed to present a rapid, aggregate, quantitative picture to help a type
system designer decide whether to support certain features and prioritize the development
of a type checker. When features are not supported, a programmer needing said features
must either ignore the warnings from the type system, or refactor her code to fit the type
system restrictions. For example, if trace typing shows that parametric polymorphism is
rarely needed in the code of interest, then the designer can defer supporting polymorphism;
in the interim, developers must work around the limitation, e.g., by code cloning. Of course,
a type system designer will need to consider other factors besides the output of trace typing
when prioritizing, such as idioms used by critical modules, or the difficulty of converting
code to fit within certain restrictions.

Contributions This paper makes the following contributions:
We propose trace typing as an approach for easily evaluating the usefulness of type system
features, allowing large bodies of existing code to inform type system design. Trace typing
requires far less effort than implementing various static type checkers, and potentially
adding type annotations to large bodies of code.
Using the trace typing approach, we systematically compare the precision of a number of
object type systems for JavaScript on some of the most popular packages for node.js,
totaling over 50,000 lines of code. We include union types as well as several variants of
polymorphism in our study.
We describe our experience with trace typing to guide and check choices in the design of
a type system for use by an optimizing JavaScript compiler.
We use trace typing to automatically identify tag tests in our large corpus, and analyze
the relative frequency of different tests and their structure.

2 Trace Typing by Examples

In this section, we show informally how trace typing can be used to carry out different kinds
of quantitative experiments relevant when designing a type system. Section 3 gives a more
formal description of the framework.

4 Trace Typing: An Approach for Evaluating Retrofitted Type Systems (Extended Version)

1 function f(a) { a.p = 7; }
2 function g(b) { return b; }
3 var x = { p: 3 };
4 var y = { p: 4, q: "hi" };
5 var z = { q: "bye", r: false };
6 f(x); // f.6: {p: Number } -> void
7 f(y); // f.7: {p: Number , q: String } -> void
8 g(y); // g.8: {p: Number , q: String } -> {p: Number , q: String }
9 var w = g(z); // g.9: {q: String , r: Boolean } -> {q: String , r: Boolean }

10 w.r = true;

Figure 1 A JavaScript program to illustrate polymorphism.

2.1 Polymorphism
Figure 1 gives a small JavaScript example. The program allocates new objects at lines 3–5,
and then calls functions f and g. The f function accesses the p field, while g just returns its
parameters. All field accesses are well-behaved: they access pre-existing fields, and fields are
only updated with a value of a compatible type. Here, we show how trace typing can can
quantify the relative effectiveness of two type systems with different levels of polymorphism
for handling this code.

We focus on the types observed in the dynamic trace for functions f and g. For our
purpose, these types correspond to the parameter and return types observed per function
call site. So, for function f we observe the type {p: Number} -> void for the call at line 6,
and {p: Number, q: String} -> void for line 7. Similarly, for function g we observe
type {p: Number, q: String} -> {p: Number, q: String} for the line 8 call, and {q:
String, r: Boolean} -> {q: String, r: Boolean} for line 9. Note that the types above
are not based on inference on the body of functions f and g.

Type system variants can be distinguished by how their merge strategies combine these
types into a single function type each for f and for g. We consider the following merge
strategies. Tsub merges, separately the argument and return types, in each case taking the
least upper bound in a suitable subtyping lattice. For our example, this strategy yields the
type {p: Number} -> void for f and {q: String} -> {q: String} for g.1 Tpoly merges
the function types by introducing type variables, arriving at a signature with parametric
polymorphism (details in Section 4.3). The type we obtain for f is the same as in the case of
Tsub, but for g, it is (E) -> E; E is a type parameter.

Next, the trace typing system performs type checking using the merged types, and reports
the number of type errors to the user. This type error count identifies program locations
that a static checker for the type system would be unable to validate, a valuable statistic for
determining the usefulness of the variant in practice (fewer errors2 means that the variant
can validate more code patterns).

With Tsub, the types are sufficient for type-checking the bodies of the functions, but g’s
type is still insufficient to typecheck the dereference at line 10, leaving one error remaining.
With Tpoly, the types are sufficient to ensure there is no type error in the program. The type
checking phase also checks conformance of the actual parameters being passed to function
calls at lines 6, 7, 8 and 9; these checks pass for both Tsub and Tpoly.

Tsub produces one type error on this trace, while Tpoly produces 0. These counts are

1 Note that we did not compute a type for g via least-upper-bound with respect to function subtyping
(with contravariance in argument position); see Section 3.1 for further details.

2 Throughout this paper, we use error as a synonym for static type error, not to refer to actual developer
mistakes in a program.

E. Andreasen et al. 5

1 function f(x){
2 ... x ... // x.2: A | int
3 if(x instanceof A){ // x.3: A | int
4 ... x ... // x.4: A
5 }
6 ... x ... // x.6: A | int
7 }
8 f(new A());
9 f(3);

Figure 2 Tag test example.

underestimates with respect to a (hypothetical) static type checker, both due to our reliance
on dynamic information, and due to the over-approximations inherent in any static type
checking. Nevertheless, across a large code base, such data could be invaluable in finding the
extent to which a particular type system feature, e.g. parametric polymorphism, is useful.
Section 6.2 presents results from an experiment that evaluated the usefulness of parametric
polymorphism and a synthetic type system with “unbounded” polymorphism on a suite of
benchmarks, via comparison of error counts.

2.2 Discriminating Unions

Suppose we wish to design a type system for JavaScript that is equipped to reason about tag
checks at the points where the program refines a union type. Such a construct is shown in the
example of Figure 2. In this example, a union type with more than one case is narrowed to a
specific case guarded by a condition. In general, the guard can be an arbitrary expression,
but that makes type checking difficult — it would need to track an arbitrary number of
predicates in carrying out an analysis. For example, the following “non-local” variation of
the type guard in the example in Figure 2 would be more complex to handle:

1 var y = x instanceof A
2 ...
3 if (y) { ...

It is simpler to support a limited number of syntactic forms.
Can a type system designer obtain quantitative feedback on what kind of conditional

constructs occur in the code corpora of interest? Are non-local type guards common? What
about conjunctions and disjunctions of predicates? Simple syntactic pattern matching is an
unreliable way to find this out, because it is fundamentally a flow analysis problem.

Trace typing makes this experiment easy. Trace typing ascribes a type to each occurrence
of each variable in the program based on dynamic observation. Given these types, one can
find pairs of successive reads of a variable without an intervening write, where the type
ascribed to the variable in the second read is different from that of the first. This is a
heuristic to identify instances of a variable’s type becoming narrower on an unrolled path,
likely to be a tag test.

Consider the example in Figure 2 again. We examine some of the type ascriptions carried
out by trace typing during an execution of the program. Here, at line 2, x refers to an object
of type A and an int, respectively, in the invocations from line 8 and line 9. Let us label the
two dynamic occurrences of x as x.2.1 and x.2.2, where the first index refers to the line
on which the variable occurs and the second refers to the invocation sequence number. The
same types will be observed for x.3.1 and x.3.2. At line 4, x.4.1 observes A; that is the
only dynamic occurrence of x on this line. Finally at line 6, x.6.1 and x.6.2 observe A and
int respectively.

6 Trace Typing: An Approach for Evaluating Retrofitted Type Systems (Extended Version)

Ascribe	

types	
 to	

values

Assign	

dynamic	

types	
 to	

variables

Assign	
 static	

types	
 to	

variables

Check	
 for	

errorsTraceProgram

Type
errors

representative	

input(s)

Candidate	
 type	

system

Figure 3 Trace typing framework overview.

Crucially, trace typing can be configured to merge the types ascribed to variable oc-
currences on the same line, but across different invocations. Say that our type system
includes union types. In that case, x.2 (the result of merging x.2.1 and x.2.2) gets the
type A | int, which represents a union type consisting of types A and int. For x.3 we get
A | int as well. However, for x.4, we get just A. Hence, for successive reads x.3 and x.4
(with no intervening write), we observe the situation that the second type is a refinement of
the first. This is a clue that the conditional at line 3 (that falls between the first and the
second reads) is a type guard.

Using this technique on a large code corpus, we found that while non-local type guards
are uncommon, boolean combinations of predicates are commonly used in type guards.
Section 6.3 details the experiment we carried out to find the nature of tag tests in real code.

3 Trace typing

Figure 3 gives an overview of the trace typing process. The trace typing framework takes
two inputs:

a type system of interest, specified by defining various parameters in a framework
(Section 3.1); and
a program P of interest, and inputs for exercising P.

Given these inputs, trace typing proceeds in the following four phases:
1. An unrolled trace is produced by executing an instrumented version of P on the provided

inputs (Section 3.2).
2. The types of all values (including objects and functions) and variables in the trace are

inferred (Section 3.3).3
3. The inferred types are merged, coarsening the precise types in the trace to a corresponding

source typing (Section 3.4).
4. The resulting types are used for type checking, to estimate the ability of the type system

to handle the observed behaviors (Section 3.5).

The number of errors reported in the last step is a useful metric for evaluating type
system features (see Section 7 for further discussion). Our framework has proven to be
sufficiently expressive to model even modern industrial proposals for retrofitted type systems
(Section 4.4). Also, the computed types can be used as part of experiments to test richer
type system features, such as tag tests (Section 4.2).

3.1 Trace Type Systems
Here, we describe the interface by which a type system is specified to the trace typing
framework. A type system T has five components:

3 In the remainder of the paper, we use the terms “ascribed” and “inferred” interchangeably.

E. Andreasen et al. 7

T.α: (Value) → Type ascribes a type to a concrete value. For JavaScript, values include
both primitives as well as object instances.

T.t: (Type, Type) → Type computes the least-upper-bound of the input types in the
subtyping lattice for the type system. For termination, we require T.t to be monotonic.

T.
→
t: (Function-type. . .) → Function-type takes a list of types for individual invocations

of a function f and computes a type that can accommodate all invocations. A type for
an invocation is computed by applying T.α to the receiver, argument, and return values,
and then combining them into a function type. T.

→
t often differs from applying T.t to the

invocation types; further discussion below.

T.equiv: (FI | FS) × (CI | CS) governs how types for different trace occurrences of the
same source variable are merged to approximate source-level typing (see Section 3.4). The
first component determines whether to maintain a separate type for a local variable at
different program points (flow sensitivity), while the second component determines if separate
types should be maintained across different function invocations (context sensitivity). Note
that use of CI vs. CS is usually dictated by the choice of T.

→
t (see Section 6.2). Also, our

implementation supports more fine-grained flow- and context-sensitivity settings; here we
only present two options for simplicity.

T.check: (TypeEnv, Statement) → number is a type checking function that counts the
number of type errors a trace statement causes in a given type environment.

Together, T.t, T.
→
t, and T.equiv comprise the type system’s merge strategy. Value

represents the values of our trace language (see Section 3.2), while Type and Function-type
are types defined entirely by T. Defining T.α for JavaScript objects is non-trivial, since the
shape and property types of the object may change over time; we detail the issues involved
in Section 4.1.

Note that T.
→
t should not use contravariance when handling function parameters, unlike

typical function subtyping. T.
→
t is used to compute a type τ for function f that is consistent

with all observed invocations of f. Hence, each parameter type in τ should accommodate
any of the corresponding parameter types from the individual calls, a covariant handling.
For an example, see the handling of calls to g in Figure 1 (Section 2.1).

Example 1: Simple OO To simulate a basic structural OO type system with width
subtyping:

T.α gives a type to an object by recursively characterizing the types of its properties (see
Section 4.1 for details).
T.t gives the least-upper-bound of two object types (retaining common fields that have
identical types) and returns the same type if given two identical types. Otherwise it
returns >.
T.

→
t applies T.t to the individual argument and return types (not using standard function

subtyping; see above) to compute a generalized function type.
T.equiv is (FI,CI).
T.check performs standard assignment compatibility checks for variable and field writes,
property type lookup on property reads, and standard checks at function invocations.

8 Trace Typing: An Approach for Evaluating Retrofitted Type Systems (Extended Version)

〈trace〉 ::= 〈statement〉*
〈statement〉 ::= 〈var〉 = 〈expression〉 | 〈var〉.〈name〉 = 〈var〉 | delete 〈var〉.〈name〉 | 〈meta〉
〈expression〉 ::= 〈var〉 | 〈var〉.〈name〉 | allocate | null | undefined | 〈bool〉 | 〈number〉 | 〈string〉
〈var〉 ::= v1 | v2 | v3, . . .
〈name〉 ::= a | b | . . .
〈meta〉 ::= begin-call〈var〉〈var〉〈var〉* | end-call〈var〉 | end-initialization〈var〉

Figure 4 TL grammar

1 <tmp0@G > = allocate // ... allocation and assignment at line 6
2 <tmp1@G > = 3
3 <tmp0@G >.p = <tmp1@G >
4 end - initialization <tmp0@1 >
5 <x@G > = <tmp0@G >
6 begin -call <f@G > <x@G > // ... first call to f, at line 9
7 <a@f_1 > = <x@G >
8 <tmp0@f_1 > = 7
9 <a@f_1 >.p = <tmp0@f_1 >

10 end -call
11 begin -call <f@G > <y@G > // ... second call to f, at line 10
12 <a@f_2 > = <y@G >
13 <tmp0@f_2 > = 7
14 <a@f_2 >.p = <tmp0@f_2 >
15 end -call

Figure 5 Excerpts from the trace for the program in Figure 1. The name of variables include
their scope, e.g. <x@G> is the x variable in the global scope, and <a@f_2> is the a variable during
the second call to f.

Example 2: Union Types To extend Example 1 with union types, we modify T.t to
introduce unions when merging different sorts of types (e.g., a number and object type). For
the code ‘var x = 3; x = { f : 4 };’, x would be given the union type number | {f :
number}: Section 4.1 discusses how we perform type checking in the presence of such union
types.

Example 3: Tsub and Tpoly revisited We referred to Tsub and Tpoly in Section 2.1. Tsub is
precisely the Simple OO of Example 1. Tpoly replaces T.

→
t of Tsub to introduce parametric

polymorphism (described further in Section 4.3).

3.2 Traces
The execution of a source code program can be recorded as a finite sequence of primitive
instructions that reproduces the dataflow of the execution. We call such a sequence a trace.
A trace is a simplified version of the original source program:

Every dynamic read or write of a variable or subexpression is given a unique identifier.
Control flow structures are erased: conditionals are reduced to the instructions of the
conditional expression and chosen branch, loops are unrolled, and calls are inlined.
Native operations are recorded as their results; e.g. a call to the runtime’s cosine function
is recorded as the computed value.

We express our JavaScript traces as programs in a simple language TL. TL is an
imperative, object-oriented language without control flow structures or nested expressions.
TL has reads and writes for variables and fields, deletion for fields, and values (objects and
primitive values). The syntax of TL can be seen in Figure 4.

Figure 5 shows excerpts from the trace for executing the code in Figure 1. Many JavaScript
details are omitted here for clearer exposition but handled by our implementation. The
variable names in the trace are generated from source variable names where present, and

E. Andreasen et al. 9

Γ̂(x) = Γ̂m(x) T. t Γ̂p(x) Γ̂m(x) = T.
⊔

xi∈x̂

Γ̂(xi)

Γ̂p(x) = T.
⊔

′x=rhs′∈stmts


Γ0(x), rhs = allocate ∨ rhs ∈ primitives
Γ̂(y), rhs = y

Γ̂(b).p, rhs = b.p ∧ Γ̂(b) is object with property p
Γ0(b).p, rhs = b.p ∧ (Γ̂(b) not an object ∨ Γ̂(b).p not present)

Figure 6 Equations for type merging and propagation.

otherwise fresh temporaries are generated. (Note that fresh temporaries are used within each
call to f.) A source mapping for each trace statement is maintained separately.

The trace contains some meta-statements to aid in later analyses. Each call is demarcated
by begin-call and end-call statements, to aid in recovering the relevant types for the
invocation. Data flow from parameter passing and return values is represented explicitly.
The end-initialization statement marks the end of a constructor or initialization of an
object literal.

3.3 Initial Type Ascription
Given a trace and a type system as specified in Section 3.1, trace typing first ascribes precise
types to variables and values in the trace, without consideration for mapping types back
to the source code. First, types are ascribed to all values. Primitive values and objects
are handled directly using T.α, while functions are handled by combining the type for each
invocation with T.

→
t, as described in Section 3.1.

Once types for values have been ascribed, each trace variable is given the type of the
value it holds (recall that each trace variable is only written once). For a given trace T ,
we define the initial type environment Γ0 as: ∀v ∈ Variables(T).Γ0(v) = T.α(ValueOf(T, v)).
This typing for trace variables is very precise—every variable access is given its own type,
based solely on the value it holds at runtime. The next phase (Section 3.4) generalizes these
initial types to more closely mimic the desired source-level treatment of variables.

Example Consider the variable <tmp1@G> at line 2 in Figure 5; it gets the value 3, for which
Tsub.α yields the type Number. Similarly the type of <x@G> at line 5 is {p: Number} because
that is the type ascribed to the value in <tmp0@G> at line 5.

3.4 Type Merging and Propagation
To model realistic type systems, we construct a less precise type environment Γ̂ by merging
the types of “equivalent” trace variables in Γ0. Variable equivalence classes are determined by
the T.equiv operator provided by the type system (see Section 3.1). If the first component
of T.equiv is FI, we employ a flow-insensitive treatment of variables: all variable occurrences
v_i within a single dynamic call corresponding to the same source variable v are made
equivalent. No such equivalences are introduced if the first T.equiv component is FS. If the
second component of T.equiv is CI, we impose a context-insensitive treatment of variables:
each matching v_i across function invocations (i.e., the same read or write of source variable
v) is placed in the same equivalence class.

Given variable equivalence classes and Γ0, Figure 6 defines Γ̂ in terms of two components:
Γ̂m for merging equivalent variables, and Γ̂p for propagating across assignments. (As Γ̂m

10 Trace Typing: An Approach for Evaluating Retrofitted Type Systems (Extended Version)

1: f :: <({p: Number }) -> Undefined >
2: g :: <({q: String }) -> {q: String })>
6: x :: {p: Number }
7: y :: {p: Number , q: String }
8: z :: {q: String , r: Boolean }

12: w :: {q: String }

Figure 7 Types ascribed for variable writes in Figure 1 with Tsub.

and Γ̂p are themselves defined in terms of Γ̂, the equations must be solved by computing
a fixed point.) Given trace variable x, Γ̂m(x) computes the least-upper bound (T.t) of all
variables in its equivalence class x̂. However, this merging alone is insufficient for mimicking
source typing, as it does not consider relationships between variables: if the program contains
statement x = y, then the type of y influences the type of x in a source level type system.

Γ̂p in Figure 6 handles type propagation across assignments. The first case handles
assignments of values, using the baseline environment Γ0. For the second case, x = y, we
generalize Γ̂(x) to include Γ̂(y). This step is important to mimic source-level handling of
the assignment. The final two cases handle object field reads b.p. If Γ̂(b) is an object type
with a property p, the handling is straightforward. However, this may not hold, due to other
approximations introduced in computing Γ̂(b) (e.g., if p were dropped when merging object
types due to width subtyping). If Γ̂(b).p does not exist, we fall back to Γ0(b).p, i.e., we
use the precise type of b. Without this treatment, type errors could propagate throughout
the remainder of the trace, misleadingly inflating the type error count. Our fallback to the
precise type of b helps to localize type errors, thereby allowing for gathering more useful
information from the rest of the trace than the alternative of producing >. For example, if x
holds a number and later an object with property foo, FI merging will give it type >. A
read of x.foo would produce a type error. Rather than tainting all subsequent uses of the
read result, we ascribe the type of the value observed as the result of that read.

Example Consider type propagation for the a variable in function f of Figure 1, using
type system Tsub from Section 2. The corresponding variables in Figure 5 are <a@f_1>
and <a@f_2>, whose respective types are {p: Number} and {p: Number, q: String} in Γ0
(<y@G>’s initialization (line 4 in Figure 1) is elided in Figure 5). Hence, with the width-
subtyping-based merge mechanism Tsub.t, both <a@f_1> and <a@f_2> are assigned type
{p: Number} in Γ̂. The types in Γ̂ for all variables in Figure 1 (using Tsub) appear in Figure 7.

3.5 Type Checking
Once type propagation is done, type checking can be performed applying T.check to every
statement in the trace, using Γ̂ as the context. T.check should return, for each statement,
the number of falsified antecedents for the corresponding type rule (returning 0 implies a
well-typed statement).

Note that our type propagation biases the location of type errors to occur more often at
reads instead of writes. Type propagation uses the T.t operator to find a variable type that
handles all writes to that variable. This process may produce a type higher in the subtyping
lattice than what the programmer may have intended, causing type errors to be pushed to
uses of that variable.

Consider the example: ‘x = {name: "Bob"}; x = {nam: "Bill"}; print(x.name);’
Most likely, the programmer intended the type of x to include a name field. If this type were
declared, the type checker would produce an error at statement two, due to the misspelled
nam field. With trace typing under the Tsub type system, we will instead compute a type for

E. Andreasen et al. 11

τ ::= > | ⊥ | number | boolean | string | O | F |
⋃
τ | µX.τ

O ::= PropName → τ

F ::= τ→ τ |
∧
F

Figure 8 Types used in the type systems we model.

shapeMap(o) ≡ {(pi, vi) | o.pi = vi at some trace point}
T.α(o) ≡ {(pi, τi) | M = shapeMap(o) ∧ pi ∈ dom(M) ∧ τi = T.t

v∈M [pi]
T.α(v)}

Figure 9 Type ascription for objects.

x that has no fields by merging the types of the two objects — essentially over-generalizing
due to the presence of what is well described as a static type error. Hence, the type error is
pushed to the access of name at statement three, which is no longer in the type of x.

Intuitively, we want that when mimicking two comparable source-level type systems, trace
typing ends up reporting fewer type errors for the more powerful one. Indeed, our results
show that this is generally the case. However, this is not guaranteed to be the case because
our ascription operation (T.α) can sometimes over-generalize, leading to unpredictable error
counts. See Section 7 for further discussion of this matter.

4 Instantiations

In this section, we detail several instantiations of the trace typing framework of Section 3,
showing its flexibility. We first describe a core type system that allows many of JavaScript’s
dynamic object behaviors. We then show how this system can be used to detect possible tag
tests in programs. Then, we present an extension of this system to test the usefulness of
parametric polymorphism. Finally, we show an instantiation with a different, stricter type
system for objects based on recent work [8], and how to evaluate various features of that
system using trace typing.

4.1 Core Type System

The types we use for most of our experiments appear in Figure 8. The top (>), bottom
(⊥), primitive, union (

⋃
), and recursive types (µ) are standard. An object type (O) is a

map from property names to types. Function types (F) are either standard (with receiver,
argument, and return types), or an intersection type over function types. We use intersection
types as a very precise model of call-return behavior, for a limit study of the usefulness of
polymorphism (Section 6.2).

In our implementation, our object types are significantly more complex, mirroring the
many roles objects play in JavaScript. In JavaScript, functions are themselves objects, and
hence can have properties in addition to being invokable. Arrays are also objects with numeric
properties and possibly non-numeric as well. Our implemented object types model these
semantics, but we elide them here for simplicity. JavaScript also has prototype inheritance,
where a read of property p from object o is delegated to o’s prototype if p is not present
on o. For the core type system, object types collapse this prototype chain, so unshadowed
properties from the prototype parent are collapsed into the child object type (more discussion
shortly). The type system of Section 4.4 deals with prototype inheritance more precisely.

12 Trace Typing: An Approach for Evaluating Retrofitted Type Systems (Extended Version)

Ascribing Object Types As noted in Section 3.1, defining the T.α operation for object
values is non-trivial. Since object properties may point to other objects, types for object
values are inter-dependent. Further, JavaScript objects may be mutated in many ways:
beyond changing property values, properties can also be added and deleted. Even the
prototype of an object may be mutated.

Trace typing is currently limited to object types that do not change over time, i.e., only
one type can be associated with each object instance during the entire execution. So, for an
object o, T.α(o) must merge together the different observed properties and property types
for o into a single object type. Nearly all practical type systems use object types in this
manner, as state-dependent object types require complex reasoning and restrictions around
pointer aliasing.

Figure 9 gives our definition of T.α for objects. We first define shapeMap(o), a map from
property names to sets of values (shown as a set of pairs). shapeMap(o) captures all the
property values that could be read from o at any point in the trace. (Note that we do not
require the property read to actually exist in the trace.) Since JavaScript property reads
may be delegated to the prototype object, shapeMap(o) gives a “flattened” view of o that
includes inherited properties. Consider the following example:

1 var y = {};
2 var x = { a: 4 } proto y; // prototype inheritance shorthand from [8]
3 x.b = { c: false };
4 y.d = "hello";
5 x.a = 10;

For this example, the shape map for the object allocated on line 2 is: [a 7→ {4, 10}, b 7→
{{c : false}}, d 7→ {”hello”}].

The object type T.α(o) is written as a set of pairs in Figure 9. The properties in T.α(o)
are exactly those in the domain of shapeMap(o). The type for property pi is obtained by
applying T.α to each value of pi in shapeMap(o), and then combining the resulting types
using T.t. When computing T.α, cyclic data structures must be detected and handled by
introducing a recursive type.

Type Checking The type rules we checked in our implemented type systems are standard.
Property accesses can be checked normally, since the accessed property name is always
evident in the trace. Function invocations are checked normally with one caveat: passing too
few arguments is permitted, as all JavaScript functions are implicitly variadic.

For type systems with union types, we optimistically allow most operations that work for
one case of the union (e.g., property access on a union typed expression) without validating
that the code has checked for the appropriate case, but treat assignment of union-typed
expressions to storage locations soundly (TypeScript and Flow have very similar rules for
unions). Our trace language does not currently include conditionals, making it non-trivial to
use tag tests to eliminate union types [19, 27]. However, our types do allow for discovering
likely tag tests in the program, as we show below.

In the case when T.t causes a type to be >, we count every use of and assignment to a
variable of that type to be an error.

4.2 Detecting Tag Tests
To soundly eliminate union types, a type system must support narrowing the union under a
conditional that checks some tag information of a value. While the theory for such narrowing is
rich and well-developed [19, 27], industrial type systems for JavaScript (Flow and TypeScript)
treat union elimination unsoundly in the same “optimistic” manner we do (Section 4.1). A

E. Andreasen et al. 13

key issue is that tag tests can vary in complexity, from simple type checks (e.g., JavaScript’s
typeof operator) to complex combinations of user-defined predicates, and it is unclear what
level of complexity must be handled to provide adequate support for tag tests.

Using trace typing, we designed a technique to observe which tag test constructs are
being used most frequently. As described previously in Section 2.2, the technique works by
observing when there are two consecutive reads of a variable v (with no intervening write),
and v’s type is narrower at the second read than the first. This technique requires using the
FS setting in T.equiv, to keep separate types for each variable occurrence.4 For function
types, we used T.

→
t from Tsub, thereby generalizing using only subtype polymorphism. In

Section 6.3, we discuss the kinds of tag tests discovered in our benchmarks with this technique
and their prevalence.

4.3 Parametric Polymorphism

Here, we define T.
→
tpoly, an instantiation of the T.

→
t operator that discovers types with

parametric polymorphism. With this approach, one can evaluate the usefulness of adding
parametric polymorphism to a retrofitted type system.

T.
→
tpoly works by enumerating all possible type parameter replacements in each invocation

type for a function, and finally choosing the most general parameterized type matching all
invocations. The enumeration proceeds by replacing all subsets of occurrences of a concrete
type by a type variable. Consider the identity function, function id(x){ return x; },
and two invocations, id(3) and id(true). The observed invocation types for id are Number
-> Number and Boolean -> Boolean. (Applying T.

→
t from Tsub to these types would yield

the unhelpful type (>)→ > for id.) For the first type, the enumeration would yield types
X -> Number, Number -> X, and X -> X (along with the original type). After proceeding
similarly for the second type, T.

→
tpoly returns the type X -> X for id, as it is the most general

type matching both invocations.
In general, T.

→
tpoly also generates signatures with multiple type parameters. It also

attempts to replace types nested one level into each argument or return type, to discover
types operating over generic data structures. While this enumeration is exponential in the
arity of the function, we did not observe an appreciable slowdown in practice.

After discovering polymorphic types, we must check the invocations against those types
in T.check. The checking can be done by treating each type variable as a direct subtype
of >, distinct from other type variables. Our implementation currently uses an alternate
strategy of modifying the context-sensitivity policy in T.equiv, so that variables in function
invocations with distinct instantiations of the type parameters are not merged. This strategy
corresponds to checking a more powerful form of bounded polymorphism, which may yield a
reduced error count compared to directly checking unbounded type parameters.

4.4 Fixed Object Layout
We now show how to enhance the object types presented in Section 4.1 to support fixed object
layout, as described in recent work by Choi et al. [8]. In general, JavaScript objects is used as
dictionaries, with arbitrary addition and deletion of properties (keys). However, implementing
all objects in this manner would lead to poor performance. Real-world programs often do
not use this dictionary-like behavior. Objects often behave like records, in which the set of

4 Our implementation also disabled the assignment merging shown in Figure 6, to discover more tag tests.

14 Trace Typing: An Approach for Evaluating Retrofitted Type Systems (Extended Version)

properties is stable: after initialization, new properties are not added or removed. Modern
just-in-time compilers detect the record usage pattern at run time, and use it to optimize
the object representation where possible.

Choi et al. [8] show how to enforce the record usage pattern in a type system, enabling
efficient static compilation of a JavaScript subset. Prototype inheritance complicates the
design of such a type system, since a write of an inherited property creates a shadowing
property in the child object. Consider the following example:

1 var o1 = {a:3, m: function (x) {this.a = x;}}
2 var o2 = {b:5} proto o1 // prototype inheritance shorthand from [8]
3 o2.a = o2.b; // adds field a to o2

The write at line 3 adds a local a property to o2, rather than updating the inherited property
o1.a. The type system for fixed layout handles this case by distinguishing between read-write
properties local to an object and read-only properties inherited from the prototype chain.
With this distinction, the type system would reject the statement on line 3 above, as it is a
write to a read-only property.5

To track read-only and read-write properties in object types, we extend T.α from Sec-
tion 4.1 as follows. Instead of tracking a single shape map for each object, we keep a
read-write shape map for locally-declared properties, and a read-only shape map for inherited
properties. In Section 4.1, the domain of shapeMap(o) includes any pi present on o at any
point in the execution. Here, to enforce the fixed layout property, we restrict the domain
of each shape map to properties present before the end of o’s initialization. (Recall from
Section 3.2 that our traces include end-initialization statements to mark these points.)
Given these two shape maps, computation of read-only and read-write properties in each
object type proceeds as in Figure 9. Type checking is enhanced to ensure that property
writes are only performed on read-write properties.

We also check for two additional properties from the Choi et al. type system [8]. The
type system requires any object used as a prototype parent to have a precise type, i.e., no
properties can have been erased from the type using width subtyping. (This is required to
handle subtle cases with inheritance [8].) In trace typing, we check this property by only
flagging types of object literals as precise, so if width subtyping is ever applied, the resulting
type is not flagged. Finally, the type system requires that if a property from a prototype
is shadowed, the parent and child properties have the same type. This condition is easily
checked in T.α once read-only and read-write properties are computed.

5 Implementation

We implemented the trace typing process described in Section 3 as a toolfor typing JavaScript
programs. This section reports on some of the more noteworthy aspects of the implementation.

Tool Architecture Our tool consists of two components: Trace Collector and Trace Typer.
Trace Collector is a Jalangi [25] analysis that obtains a trace of a program of interest
by monitoring the execution using source-level instrumentation; it consists of about 2500
lines of JavaScript code. Trace Typer implements the core trace typing framework. The
framework and the type systems described in Section 4 are implemented in about 4000 lines
of TypeScript, of which about 1000 lines are the type system implementations.

5 The type system of Choi et al. also tracks which properties are written on method receivers, to locally
check validity of inheritance [8]. With trace typing, this information need not be tracked explicitly,
since receiver types are propagated into method calls.

E. Andreasen et al. 15

Modeling JavaScript Semantics In our implementation, great care is taken to accurately
model JavaScript’s complex primitive operators. Much of the complexity in operator semantics
lies in the implicit conversions performed on operands. For example, the binary && operator
first coerces each of its operands to a boolean value; this coercion can be applied to a
value of any type. However, the value of the && expression is always one of the uncoerced
operands. The implementation creates trace statements that models these conversions
explicitly, enabling accurate data flow tracking and type ascription.

Modeling the Native Environment To handle interactions with the native environment
(e.g., built-in JavaScript library routines), we require a model of the native behavior. We
express native models using trace statements, avoiding the need for a separate modeling
language. In many cases, we can actually infer native models from the concrete states of the
execution, thereby avoiding the significant work of writing models by hand. Model inference
works by associating a new global escape variable with each object that can escape to the
native environment. Passing an object to the native environment is modeled as a write to the
corresponding escape variable, while retrieving the object from the environment is modeled
as a read. With this handling, a model can be automatically inferred for much of the native
environment, including complex functions such as the overloaded Array constructor. Further
details of this inference can be found in Appendix A.

6 Experiments

We report on several experiments we conducted using trace typing. First, we studied the
trends in error counts for six type system variants, generated by varying handling of subtyping
and function types (Section 6.2), yielding useful insights on the relative importance of these
variants. Second, we used trace typing to discover tag tests in our benchmark and characterize
their relative frequency and complexity (Section 6.3). Finally, we studied several questions
around the restrictiveness in practice of a type system for fixed object layout (Section 6.4).
Together, these experiments show the usefulness and versatility of the trace typing framework.
We first describe our benchmarks, and then present the experiments.

6.1 Benchmarks
We use nine popular packages from npm, the node.js package manager, as benchmark programs.
Figure 10 measures the static source code size of each program,6 as well as the number
of statements in the traces we generate and the number of static source lines covered by
our executions. underscore and lazy.js are utility libraries. esprima and escodegen are
a JavaScript parser and code generator, respectively. typescript is the compiler for the
TypeScript language.7 minimist, optparse and qs are parsers for command line options
and query strings. xml2js is an XML serializer/deserializer.

These benchmarks capture a range of interesting JavaScript styles. The parsers, code
generators, and compilers manipulate OO-style AST data structures In contrast, the utility
libraries and option parsers are highly reflective (e.g., constructing or extending objects using
dynamically-computed property names), but are otherwise written in a largely functional
style. Hence, the suite as a whole exercises a variety of features of trace typing.

6 Non-comment, non-blank lines as counted by cloc, excluding build scripts, tests and test harness code.
7 Figure 10 gives lines of JavaScript source (the compiler is bootstrapped).

16 Trace Typing: An Approach for Evaluating Retrofitted Type Systems (Extended Version)

Benchmark sizes Fixed-object-layout error rates

Benchmark LOC LOC exec Length ro/rw prototypal inheritance

escodegen 2132 723 375325 0/53 0/0 0/217
esprima 4610 1052 23986 0/44 0/2 0/298
lazy.js 2557 1016 25439 114/387 0/17 2/470
minimist 186 151 140812 0/14 0/0 0/81
optparse 222 141 15246 0/15 0/1 0/51
qs 726 256 102637 0/41 0/0 0/62
typescript 35456 8139 167730 1/2085 2/3 0/3286
underscore 1098 727 120081 2/175 0/0 1/294
xml2js 840 275 73672 0/42 1/2 0/91

Total 52193 14541 1243857 117/2856 3/25 3/4850
Figure 10 Benchmarks sizes and error rates for the fixed-object-layout type system. ‘LOC’ is

the lines of code in the program. ‘LOC exec’ is the lines covered in our execution of the program.
‘Length’ is the total number of trace statements. ‘ro/rw’, ‘prototypal’ and ‘inheritance’ are the
error-rates for different each kind of type check.

To exercise the programs for trace generation, we wrote a separate driver for each
benchmark. For the option parsers and escodegen, this driver comprised extracted tool
invocations from their test suites. We exercised the utility libraries with code snippets from
their official tutorials.

6.2 Comparing Type System Variants
For our first experiment, we compared six type systems, generated by varying the T.t and
T.

→
t operators over the core types of Section 4.1. For T.t, we used two options:
subtyping: This uses standard structural (width) subtyping for objects, as in Tsub from
Section 2.1 (see also Example 1 in Section 3.1).
unions: T.t treats two object types as in Subtyping, but also introduces a union type
when applied to an object type and a primitive (see Example 2 in Section 3.1).

For T.
→
t, we use three options:

base: T.t is applied individually to argument and return types, as discussed in Section 3.1.
poly: This uses T.

→
tpoly to discover parametric polymorphism, as discussed in Section 4.3.

intersect: T.t simply combines two function types into an intersection of the two types.
This strategy yields more precise types than any practical type system, and hence is only
used as a limit study of the usefulness of polymorphic function types.

T.equiv uses FI for flow-insensitive variable types in all configurations. Context sensitivity
is varied in accordance with T.

→
t: for base, we use CI, while for intersect we use CS (since

each invocation may have its own case in the intersection type). Context sensitivity for poly
was discussed in Section 4.3.

After collecting traces, we ran our trace typer with each of our type system variants,
counting the number of static (source location) type errors that arose. We include only type
errors that occur in the subject program, not in the libraries they depend on.

Experiments were run on a quad-core Intel Core i7-3520M@2.90GHz with 16GB RAM,
running Ubuntu 15.10 and node.js 5.0. Collecting traces and running all six configurations
required less than 15 minutes.

Our full data set is large—error counts for all configurations on all benchmarks—and is
included in Appendix B. We present two select slices of data here. Figure 11 presents the

E. Andreasen et al. 17

0	

100	

200	

300	

esc
od
eg
en
	

esp
rim

a	

laz
y.js
	

mi
nim

ist
	

op
tpa
rse
	
 qs	

typ
esc
rip
t	

un
de
rsc
ore

	

xm
l2j
s	

subtyping	

unions	

Figure 11 Error counts for subtyping and unions, selecting base for T.
→
t.

0	

100	

200	

300	

esc
od
eg
en
	

esp
rim

a	

laz
y.js
	

mi
nim

ist
	

op
tpa
rse
	
 qs	

typ
esc
rip
t	

un
de
rsc
ore

	

xm
l2j
s	

base	

poly	

intersect	

Figure 12 Error counts for different T.
→
t settings, selecting subtyping for T.t.

number of syntactic locations with errors for subtyping and unions, where T.
→
t is base in

either case. Figure 12 shows error counts for the three T.
→
t settings, where T.t is subtyping

in all three cases. The trends shown here are similar across other configurations.
Overall we see trends we would expect, with more powerful type systems yielding fewer

errors. There are two small inversions in the results, where a more precise configuration
(poly) produces more errors than a less precise configuration (base) discussed shortly.

This experiment let us find quantitative answers to the kinds of questions we raised in
Section 1 and Section 2. We remind the reader that the objective of these experiments is not to
pass verdict on the usefulness of certain type system features in an absolute sense. Rather the
objective is to help designers of retrofitted type systems prioritize features based on empirical
evidence rather than by intuition alone. If a type system feature ends up unsupported, then
users will need to work around that limitation in their code (or live with type errors).

How prevalent is the need for union types? While Figure 11 shows that union types do
reduce error counts over just using subtyping (as expected, since unions are more powerful),
the degree of reduction is relatively small. While TypeScript and Flow now both include
unions, TypeScript did not add them until two years after its initial release. The small error
count reduction due to union types in our experiments could help to explain why they were
not needed in TypeScript from the very beginning.8

How prevalent is the need for parametric polymorphism? For intersection types? As
shown in Figure 12, the intersection configuration always reduced errors compared to
poly, while poly almost always reduces errors compared to base9. While the error count

8 TypeScript’s issue tracker has further discussion of their motivation for adding unions; see https:
//github.com/Microsoft/TypeScript/issues/805.

9 The inversions in esprima and optparse are due mostly to implementation quirks, such as an incomplete
merge operator on recursive types that returns > more than necessary.

https://github.com/Microsoft/TypeScript/issues/805
https://github.com/Microsoft/TypeScript/issues/805

18 Trace Typing: An Approach for Evaluating Retrofitted Type Systems (Extended Version)

reductions for poly are not dramatic in general (typescript is discussed below), parametric
polymorphism is crucial for ascribing types to core routines manipulating data structures
(e.g., array routines), and hence its inclusion in TypeScript and Flow is unsurprising. The
dramatic drop in error count for several programs under the intersection configuration gives
strong evidence that JavaScript requires types that can express non-uniform polymorphism,
such as intersection types. In fact, TypeScript has long supported overloaded functions for
expressing intersection types.10

The typescript benchmark stands out from the others as it was originally implemented
in TypeScript, and hence we would expect it to be mostly well typed. Our results confirm this:
the error count is only 290 in 8139 (JavaScript) lines of code for the least precise configuration,
a much lower error rate than the other programs. Also, the significant reduction in errors
going from base to poly for the benchmark (see Figure 12) corresponds nicely to the use of
parametric polymorphism in the TypeScript code base; see Section 7 for an example.

While in the above experiment we used trace typing to retroactively find evidence of the
need of type system features, the next two experiments are concerned with more exploratory
questions.

6.3 Finding Tag Tests
Here, we provide the first empirical analysis of the use of tag tests in JavaScript which
identifies tag tests based on observed narrowing (as described in Sections 2.2 and 4.2), rather
than syntactic criteria. We post-process the ascription results to automatically identify
occurrences of guard predicates using the techniques of Section 4.2. We then manually
analyze the predicates to identify non-local guards (where the boolean result of a check is
computed outside a syntactic conditional statement), non-atomic guards (i.e., conjunction
and disjunction of guards), and predicate functions (other functions whose result indicates a
certain refinement).

Methodology As mentioned in Section 4.2, we detect tag tests by observing consecutive
reads of a variable where the type is narrowed at the second read. Usually, the first read of
this pair will be the use in the type guard. In cases where the guard expression is saved to a
local variable before being checked, this technique detected spurious additional guards, but
they were easy to recognize and discard manually.

We ran the set of benchmark programs from Section 6.1 with the union-producing
T.t operator of Section 6.2, and a flow sensitive T.equiv policy to keep types of variable
occurrences under conditionals separated.

Results It took 90 minutes to manually classify all of the discovered type guards, the results
of which can be seen in Figure 13. The figure contains rows for different kinds of type guards,
if a type is non-atomic, it can be classified as having multiple kinds. Due to their prevalence,
extra rows have been added for type guards that are applied on the property of the guarded
value.

Overall there are 6 major classes of narrowing checks: typeof, instanceof, checking an
explicit tag field in a data structure11 (mostly in the AST manipulations in our corpus), a
general predicate function, explicit property presence checks (hasOwnProperty), and checks
of objects’ prototype or constructor fields. The most prevalent type guards are typeof,

10 See http://www.typescriptlang.org/Handbook#functions-overloads.
11A popular requested TypeScript feature: https://github.com/Microsoft/TypeScript/issues/186

http://www.typescriptlang.org/Handbook#functions-overloads
https://github.com/Microsoft/TypeScript/issues/186

E. Andreasen et al. 19

Measure Count Example

Type guards 164 -

Non-local 6 var isObj = typeof x == ’object’; if(isObj)
Non-atomic 46 if(typeof x == ’string’ || typeof x == ’object’)

typeof 30 typeof x === ’function’
instanceof 9 x instanceof Function
tag field 16 x.kind = Kinds.Template
predicate function 30 Array.isArray(x)
property presence 35 x.hasOwnProperty(’prop’), x.prop === undefined
.prototype/.constructor 3 x.constructor === Function

.. test on property 37 typeof x.prop === ’function’

other 23 className === toString.call(x)

Figure 13 Tag test classification results.

use of general predicate functions, and (a variety of) property presence tests. Checking an
explicit tag field, used to mimic algebraic datatypes in JavaScript, are common but highly
program-dependent. Non-local type guards are rare, and would be easy to rewrite if needed.
Boolean combination of type guards is common enough that they probably should not be
ignored by a sound union elimination check.

6.4 Evaluating Fixed Object Layout
We present a case study of evaluating Choi et al.’s type system [8] to enforce fixed object
layout in JavaScript, as described in Section 4.4. We checked the following salient features in
the trace typing framework:

1. Property writes We checked that property writes were only performed on properties
deemed to be “read-write” properties in the type system.

2. Precise types We checked that only objects with a “precise” type (see Section 4.4) were
used as a prototype parent for other objects.

3. Consistent shadowing We checked that when properties were shadowed in the prototype
chain, the parent and child properties had the same type.

We ran trace typing with this type system with the benchmark suite of Section 6.1 (with
the subtyping T.equiv and base policy from Section 6.2, merging all occurrences of a variable
in a dynamic function invocation). Figure 10 shows the errors reported by our trace typing
model. The column ro/rw shows, in absolute numbers, how many of the property writes were
to fields that were inherited from prototype chain (and not shadowed by a local redefinition),
of the total number of property writes. The column prototypal shows, how many of the
assignments to some object’s prototype property was in violation of the restriction mentioned
(second bullet) above, vs total number of such assignments. The column inheritance shows
in how many cases, a property was shadowed with an inconsistent type.

The results add significant confidence to our initial beliefs that some of the restrictions
the type system imposes are not onerous in practice: the numerator numbers are generally
(though not universally) quite small compare to the denominator. We manually found that
most of the ro/rw type errors for lazy.js were due to the way prototype hierarchies were
initialized, and that the type errors could be eliminated by a simple refactoring.

20 Trace Typing: An Approach for Evaluating Retrofitted Type Systems (Extended Version)

// TypeScript /src/ compiler / parser .ts :39
export function forEachChild <T>(node:Node , ...):T {

... switch (node.kind) {
... case SyntaxKind . PropertySignature :

... return visitNode (cbNode , (< VarLikeDecl >node). propName);
}

}
// TypeScript /src/ compiler /type.ts :504
export interface VarLikeDecl extends Declaration {

propName ?: Identifier ; \n dotDotDotToken ?: Node;
name: DeclarationName ; \n questionToken ?: Node;
type ?: TypeNode ; \n initializer ?: Expression ;

}

Figure 14 Code fragment from typescript.

Additionally, from the trace typing data (not presented here) we found that support
for optional properties in the type system could have helped eliminate a large number of
type errors, and so would be a very useful feature to add to the type system. Trace typing
finds this information without the need for implementing an actual static type inferencer for
JavaScript that is robust enough to work on large code bases.

7 Discussion

In this section, we discuss the quality of types inferred by trace typing, present limitations
and threats to validity, and then mention possible future generalizations of our approach.

Quality of Types Inferred Because our type inference approach is non-standard and our
error counts are sensitive to over-generalization (Section 3.5), it is worth asking whether the
types we infer are sensible — whether a human developer would write similar types. While
there is no systematic way to verify this, our experience says that the types are sensible.
In the course of developing the framework and type system plugins, we spent a significant
amount of type examining the types inferred. Object (property) types rarely deviated from
what we would have written ourselves.

We discuss one specific example of types inferred by trace typing for the typescript
benchmark, for which the original TypeScript code contains declared types (trace typing
analyzes the transpiled JavaScript version). Figure 14 contains an excerpt from the TypeScript
code. At the return statement the node variable always has type VarLikeDecl (also shown
in the figure). Trace typing finds the relevant properties that we see mentioned in the
interface, as well as the inherited properties. Moreover, it also correctly computes the
structural type of each property of VarLikeDecl such as initializer. Due to space reasons,
we do not show all the inferred types; but we found them reasonable on manual inspection.

Our ascription of parametric polymorphic types (Section 4.3) also works well in practice.
For example, it computes these polymorphic signatures for array methods (from the native
environment):

Array <E>. prototype . indexOf : (E) -> Number
Array <E>. prototype . concat : (Array <E>) -> Array <E>
Array <E>. prototype .push: (E) -> Number
Array <E>. prototype .pop: () -> E

These types are similar to the types used for native environment by TypeScript programs.12

12 https://github.com/Microsoft/TypeScript/blob/v1.7.3/lib/lib.core.d.ts#L1008

https://github.com/Microsoft/TypeScript/blob/v1.7.3/lib/lib.core.d.ts#L1008

E. Andreasen et al. 21

The exceptions to the above arise mostly where type errors occur, and in those cases the
types are not bizarre but simply a different choice among several incompatible options (e.g.,
when a method is overridden with an incompatible type). For the intersect configuration
of Section 6.2, with unbounded intersection types, the gap between inferred types and
what one would write at the source level is larger, due to the synthetic nature of the type
system. Designing a trace typing system that infers a mix of parametric polymorphism and
intersection types closer to what a person would write is future work.

Limitations and Threats to Validity Trace typing works under the assumption that the
input programs are mostly type correct; the error locations generated by our framework
lose accuracy when this assumption is violated. Moreover, we assume that most parts of a
program have a correct type in the system being modeled, which may not always hold. Our
manual inspection of inferred types suggests that the natural formulations for T.α and T.t
generally behave well, but it is possible other pathological cases exist.

A result that type system design A yields fewer type errors than design B in our framework
does not strictly imply that the same will hold for complete source-level implementations,
due to inevitable over-approximations in a static type checker. Constructs inducing such
approximations include reflective constructs like dynamic property accesses (which are
resolved in our trace) and loops. Type system feature interactions can exacerbate this effect.
The best use of trace typing is to compare type systems that differ in only one or two
parameters, and to give less weight to very small differences in the number of errors detected.
Consider this example:

1 function f(x) { return x.p; }
2 f({p:3, q:4});
3 f({p:3, r:true });
4 var y = {p:3};
5 y = {p:3, q:5};
6 f(y);

Here, type ascription’s over-generalizing in the presence of what would be static type
errors can lead to some unexpected results. For the example above, ascription in the base
polymorphism configuration (see Section 6.2) with no union types would produce the type
{p:Number} -> Number for f, which would allow the trace of the program to type check.
Ascription with the more precise intersect configuration would give the intersection type {p:
Number,q:Number} -> Number ∧ {p:Number,r:Boolean} -> Number. But, the two writes
to y ensures that it is ascribed type {p:Number}, which is not a subtype of either argument
type in the intersection! In such cases, a more powerful trace type system can produce more
errors than a less powerful one. We did not observe this issue in experimental results we
inspected manually, but it may have occurred elsewhere.

Our work is an empirical study using dynamic analysis, and we inherit the normal threats
to validity from such an approach, namely possible sampling bias in the subject programs
and sampling bias from the inputs used to gather traces. For our study, we took inputs from
each program’s often-substantial test suite, which appeared from manual inspection to give
reasonable path and value coverage.

Potential Extensions We have focused thus far on type systems for JavaScript, but the
core ideas of our technique apply to other languages as well. The generalization to other
dynamically typed languages (e.g., Ruby, Python) would require instrumentation of the other
language. The type system implementations on top of the new framework would need to be
tailored to the primitives and idioms of the new target language.

22 Trace Typing: An Approach for Evaluating Retrofitted Type Systems (Extended Version)

Our existing trace format could be used for additional experiments that analyze the types
ascribed to specific parts of the program. For example, this could inform strategies for typing
challenging constructs like computed property accesses [23].

More metadata could be added to our traces to enable experimentation with other
type-system features, with no changes to our core approach. For example, more detailed
information about the evolving types and layouts of objects could be maintained, to enable
experimentation with alias types [9, 26]. Our hope is that trace typing will be a useful base
for such future extensions.

8 Related work

We focus here primarily on approaches to retrofitting type systems onto existing languages
and on other means of evaluating type systems on large bodies of code, with a secondary
focus on type systems for JavaScript.

Retrofitting Type Systems Retrofitting type systems onto existing languages is not new,13

nor is it restricted to dynamic languages. The notion of soft typing for dynamically typed
languages is now well-established [6, 27, 30]. The notion of pluggable type systems — including
extensions to existing type systems — is also an established idea [5], which continues to
produce useful tools [11, 22]. Both bodies of work suffer the same difficulty in evaluating lost
precision: it requires tremendous manual effort to evaluate on non-trivial amounts of code,
leading to design decisions based on intuition and a handful of carefully-chosen examples.

More recently, two groups of researchers arrived at means to induce a gradual type system
variant of a given base type system, one as a methodology to produce a gradual type system
by careful transformation of a static type system [13] and another as a a tool to compute a
gradual version of a type system expressed as a logic program [13]. Both deterministically
produce one gradual type system from one static type system, aiding with the introduction
of gradual typing, but not of overall design.

Evaluating Type Systems The implementation effort for prototyping similar but slightly
different type systems and applying them is a significant barrier to evaluating completely
new type systems for existing programming languages. TeJaS [20] attempts to remedy this
for JavaScript type systems by carefully architecting a modular framework for implementing
type systems. It relies on bidirectional typing to reduce annotation burden, but this still
requires significant manual annotation.

A smaller but closely-related body of work is evaluating changes to existing type systems.
Wright studied approximately 250,000 lines of SML code [29], cataloguing the changes neces-
sary to existing code in order to type-check under the value-restriction to type generalization.
The study in this case required less implementation effort than the general approach we
propose; SML implementations existed, and could be modified to test the single alternative
type system change. Nonetheless, his careful analysis of the impact of the proposed change
justified a type system change that has withstood the test of time. SML still uses the value
restriction, and OCaml uses a mild relaxation of it [14]. More recently Greenman et al. [17]
performed a similar evaluation of an alternative proposal for F-bounded polymorphism in
Java.

13The use of the term retrofitting is relatively recent, due to Lerner et al. [20].

E. Andreasen et al. 23

Dynamic Type Inference Type inference for dynamic languages is another rich area with
strong connections to our trace-based type inference. The closest such work to ours is dynamic
type inference for Ruby [2]. They use Ruby’s reflection capabilities to pass virtualized values
through a program, with each use of the virtualized objects gathering constraints on the
type of the object. Their system has a guarantee that the inferred types will be sound if
every path within each procedure is executed at least once. Like trace typing, they rely on
dynamic information to infer types for program fragments, including for complex source-level
constructs. Unlike our approach, they make no attempt to simulate the effect of type checking
the program: they infer types that hold at method entry and exit, but do not infer types
for local variables, whose types may change arbitrarily. Also, they cannot infer method
polymorphism (though they support annotations), require manual annotation for native code,
and evaluate only a single type system design.

Saftoiu et al. [24] implement dynamic type inference for JavaScript, generating types
for a particular JavaScript type system based on dynamic observation, and find that it is
useful for converting code to their typed JavaScript dialect. Their type system is sound with
respect to λJS [18], and they can type-check the source code to verify the inferred types.
We cannot do this, because our goal is experimenting with type system design, so our type
systems are not adequate to type check source programs. Like us they instrument code via
source-to-source translation. We evaluate significantly more code: their examples total 3799
lines of code.

Other Uses of Traces Coughlin et al. [10] use dynamic traces to identify the spans between
program safety checks and data uses guarded by those checks, e.g., a null check followed
by a dereference. These measurements can inform the design of static analyses, e.g., by
indicating whether or not an analysis should be interprocedural. While similar in philosophy
to our work, we differ substantially in technical details. First, their implementation is specific
to null dereference errors. Second, their goal is to measure aspects of program behavior
quantitatively, and interpret that measurement when designing an analysis; we instead
advocate directly comparing approximations of a real analysis.

Åkerblom and Wrigstad [1] study the receiver polymorphism of a very large base of open
source Python programs, primarily to examine how adequate nominal subtyping might be
for Python (as opposed to structural subtyping). They classify static call sites by whether
they were observed to have multiple receiver types, consider whether call sites might be
dispatched on parametrically-polymorphic targets by clustering call sites in different ways
(roughly similar to our context-sensitivity policies), and do some reasoning about cases
where different static calls on the same syntactic receiver may have different qualities (a
coarse approximation of typing local variables). They do not reason about actual method
types, argument types (except implicitly if methods are invoked on arguments), and do not
attempt to simulate source type checking as we do. ECMAScript 5 — the previous version
of JavaScript — lacks classes, so even code written to ECMAScript 6 — which added classes
— will generally require structural subtyping. Our type ascription machinery could be used in
a style similar to Section 6.3 to implement most of their instrumentation.

Type Systems for JavaScript Most previous work on static typing for JavaScript focuses
on novel approaches to typing its most expressive features; we describe particularly relevant
examples here. Guha et al.’s flow typing [19] allows for refining types in code guarded
by runtime tag checks. DJS [9] implements a sophisticated dependent type system that
includes a type-based analogue [26] of separation logic to describe heap changes, and an
SMT-based refinement type system for characterizing the shape of objects. TeJaS [20] builds

24 REFERENCES

an expressive framework for experimenting with JavaScript type systems, whose core is an
extension to Fω

<:.
Throughout we have discussed Flow [12] and TypeScript [4, 21]. They are quite similar

(objects, unions with unsound elimination rules, intersections) with a few small points of
divergence (singleton string types and intentional unsound subtyping in TypeScript, non-
nullable fields in Flow). They have very different approaches to type inference and checking:
TypeScript uses limited local type inference, while Flow performs a global (per-module) data
flow analysis. We have already modeled key features — objects with structural subtyping,
union and intersection types — in our framework.

TypeScript and Flow include forms of parametric polymorphism, based on programmer
annotations. Trace typing can approximate some forms of parametric polymorphism (Sec-
tion 3.4). Both TypeScript and Flow also allow some narrowing of union types based on tag
tests (unsound in general due to aliasing and mutation). Trace typing could be extended to
handle such features in future work, as discussed in Section 7.

Both TypeScript and Flow have added type system features based on user feedback, with
great success. Trace typing provides an alternate, complementary source of information for
deciding which type system features to include, which can be employed without having a
large user base.

9 Conclusions

We presented a framework for quantitatively evaluating variations of a retrofitted type system
on large code bases. Our approach involves gathering traces of program executions, inferring
types for instances of variables and expressions occurring in a trace, merging types according
to merge strategies that reflect options in the source-level type system design space, and
type-checking the trace. By leveraging the simple structure of traces, we dramatically reduce
the effort required to get useful feedback on the relative benefit of type system features.

To evaluate the framework, we considered six variations of a type system retrofitted
onto JavaScript. In each case, we measured the number of type errors reported for a set of
traces gathered from nine JavaScript applications (over 50KLOC) written in a variety of
programming styles. The data offers quantitative validation for some of the design choices in
two popular retrofitted type systems for JavaScript (Typescript and Flow). In a different
experiment, we used the results of trace typing to automatically identify places where type
narrowing occurred dynamically, to gather empirical results on the frequency and variety of
tag tests in JavaScript. In yet another experiment, we evaluated how onerous the restrictions
for a new retrofitted JavaScript type system [8] were, validating intuitions that our restrictions
were mostly reasonable, and identifying priorities for future extensions.

The feasibility of carrying out these experiments is a strong validation of the trace typing
approach.

References
1 Beatrice Åkerblom and Tobias Wrigstad. Measuring polymorphism in Python programs. In
Proceedings of the 11th Symposium on Dynamic Languages (DLS), 2015.

2 Jong-hoon David An, Avik Chaudhuri, Jeffrey S Foster, and Michael Hicks. Dynamic Inference
of Static Types for Ruby. In POPL, 2011.

3 Chris Andreae, James Noble, Shane Markstrum, and Todd Millstein. A Framework for Imple-
menting Pluggable Type Systems. In OOPSLA, 2006.

4 Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding TypeScript. In ECOOP,
2014.

REFERENCES 25

5 Gilad Bracha. Pluggable Type Systems. In OOPSLA Workshop on Revival of Dynamic Languages,
2004.

6 Robert Cartwright and Mike Fagan. Soft Typing. In PLDI, 1991.
7 Avik Chaudhuri. Bounded Polymorphism. URL: http://flowtype.org/blog/2015/03/12/

Bounded-Polymorphism.html.
8 Philip Wontae Choi, Satish Chandra, George Necula, and Koushik Sen. SJS: A Type System for

JavaScript with Fixed Object Layout. In SAS, 2015.
9 Ravi Chugh, David Herman, and Ranjit Jhala. Dependent Types for JavaScript. In OOPSLA,

2012.
10 Devin Coughlin, Bor-Yuh Evan Chang, Amer Diwan, and Jeremy G. Siek. Measuring enforcement

windows with symbolic trace interpretation: What well-behaved programs say. In ISSTA, 2012.
11 Werner Dietl, Stephanie Dietzel, Michael D Ernst, Kivanç Muşlu, and Todd W Schiller. Building

and Using Pluggable Type-Checkers. In ICSE, 2011.
12 Facebook. Flow: A Static Type Checker for JavaScript. http://flowtype.org/.
13 Ronald Garcia, Alison M. Clark, and Éric Tanter. Abstracting Gradual Typing. In POPL, 2016.
14 Jacques Garrigue. Relaxing the Value Restriction. In Functional and Logic Programming, 2004.
15 Google. Closure. https://developers.google.com/closure/.
16 Colin S Gordon, Werner Dietl, Michael D Ernst, and Dan Grossman. JavaUI: Effects for

Controlling UI Object Access. In ECOOP, 2013.
17 Ben Greenman, Fabian Muehlboeck, and Ross Tate. Getting F-bounded Polymorphism into

Shape. In PLDI, 2014.
18 Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The Essence of JavaScript. In

ECOOP, 2010.
19 Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. Typing Local Control and State

Using Flow Analysis. In ESOP, 2011.
20 Benjamin S Lerner, Joe Gibbs Politz, Arjun Guha, and Shriram Krishnamurthi. TeJaS:

Retrofitting Type Systems for JavaScript. In DLS, 2013.
21 Microsoft. TypeScript Handbook. http://www.typescriptlang.org/Handbook.
22 Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H Perkins, and Michael D Ernst.

Practical Pluggable Types for Java. In ISSTA, 2008.
23 Joe Gibbs Politz, Arjun Guha, and Shriram Krishnamurthi. Semantics and Types for Objects

with First-Class Member Names. In FOOL, 2012.
24 Claudiu Saftoiu, Arjun Guha, and Shriram Krishnamurthi. Runtime Type-Discovery for

JavaScript. Technical Report CS-10-05, Brown University, 2010.
25 Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. Jalangi: A selective

record-replay and dynamic analysis framework for JavaScript. In FSE, 2013.
26 Frederick Smith, David Walker, and Greg Morrisett. Alias Types. In ESOP, 2000.
27 Sam Tobin-Hochstadt and Matthias Felleisen. Logical Types for Untyped Languages. In ICFP,

2010.
28 Jonathan Turner. Announcing TypeScript 1.4. URL: http://blogs.msdn.com/b/typescript/

archive/2015/01/16/announcing-typescript-1-4.aspx.
29 Andrew K. Wright. Simple Imperative Polymorphism. LISP and Symbolic Computation, 8(4):343–

355, 1995.
30 Andrew K. Wright and Robert Cartwright. A Practical Soft Type System for Scheme. ACM

TOPLAS, 19(1):87–152, January 1997. doi:10.1145/239912.239917.
31 Haiping Zhao, Iain Proctor, Minghui Yang, Xin Qi, Mark Williams, Qi Gao, Guilherme Ottoni,

Andrew Paroski, Scott MacVicar, Jason Evans, and Stephen Tu. The HipHop Compiler for PHP.
In OOPSLA, 2012.

http://flowtype.org/blog/2015/03/12/Bounded-Polymorphism.html
http://flowtype.org/blog/2015/03/12/Bounded-Polymorphism.html
http://flowtype.org/
https://developers.google.com/closure/
http://www.typescriptlang.org/Handbook
http://blogs.msdn.com/b/typescript/archive/2015/01/16/announcing-typescript-1-4.aspx
http://blogs.msdn.com/b/typescript/archive/2015/01/16/announcing-typescript-1-4.aspx
http://dx.doi.org/10.1145/239912.239917

26 REFERENCES

A Modeling the Native Environment

In Section 5 we briefly mentioned that we automatically construct models of the native
environment. This appendix gives full details.

We rely on three procedures, toNative, fromNative and allocate (see Figure 15 for
pseudo-code14) that performs this inference:
toNative: This function models the four cases in which objects escape to native functions:

the object is (i) the this-object or (ii) an argument in a call to a native function, or
(iii) the object is returned to a native function as part of a callback or (iv) the object
is thrown as an exception. An object, o, that escapes to a native function forces a call
to toNative(o), which uses a unique escape-variable for the object to ensure that the
model represents the flow of that object regardless of how it is actually used in the native
function.

fromNative: This function handles the four cases where objects enter the application from
the native environment: the object is (i) the this-object or (ii) an argument in a callback
from native code, or (iii) the object is returned from a native function, or (iv) the
object is caught as an exception. An object, o, that comes from the native environment
forces a call to fromNative(o) which will create a trace read-expression for the special
escape-variable for the object. If the object has not been observed before, it assumed to
be freshly allocated by the native environment, so a call to allocate is also performed.

allocate: An object, o, that is observed during the execution has an associated call to
allocate(o), which will create a trace allocate-expression and the necessary trace
statements to initialize the fields and prototype of o. This process might allocate further
objects recursively. The initial global JavaScript object is modeled with a single call to
allocate(global).

The use of an escape variable per escaping object o may seem useless, but during type
propagation this results in the merge of each type at which the object o escapes (e.g., if
o is thrown from source locations that see different subsets of its fields), and allows that
imprecision to manifest where the object re-enters the program from the native environment
(e.g., a catch of o will see the merge of the types o had at throws) so we can soundly
overapproximate the typing consequences of the native data flow.

As an example, consider the inference of a model for a call to the native Array constructor
function. This function takes a variable number of arguments, and returns an array containing
those arguments; e.g., Array({p:1},{p:2}) returns [{p:1},{p:2}]. The arguments to this
call will be assigned to special escape variables via toNative. Then, a call to allocate will
allocate the result array, as it is a fresh object from a native call. Finally, via fromNative,
the elements of the result array will be set to the corresponding arguments of the call by
reading the corresponding special escape-variables.

To handle cases where the automated inference described above would produce unsound
results, we allow tool users to specify that certain functions need to be modeled manually15.
In such cases, the user needs to create a custom model that creates the appropriate trace
statements. This is the case for side effecting operations that may change the type of some
property, such as Array.prototype.sort which rearranges the elements of an array. Note
that, in such a rearrangement case, the model does not need to take care of the general

14 Here, we only cover the important case where objects are exchanged with the native environment. Only
minor changes to these steps are needed to account for primitives.

15 For the experiments in this paper, we modeled the behavior of 11 functions manually.

REFERENCES 27

toNative (o, fromVar) {
makeTraceWrite (getEscapeVar (o), fromVar);

}

fromNative (o, toVar) {
escapeVar = getEscapeVar (o);
if(hasNotBeenAllocated (o)) {

allocate (o, escapeVar);
}
makeTraceWrite (toVar , escapeVar);

}

allocate (o, allocVar) {
makeTraceAllocation (allocVar)
for(var field in o) {

fieldVar = makeVariable ();
fromNative (o[field], fieldVar);
makeTraceFieldWrite (allocVar , field , fieldVar);

}
}

Figure 15 The three main procedures for inferring a model for the native environment.

semantics of Array.prototype.sort, just the concrete invocations: The trace statements
that reproduce the rearrangement can be generated by inspecting shape of the array before
and after the call to Array.prototype.sort.

B Full Results for six Type Systems

Figure 16 give the full results for the experiments in Section 6.

28 REFERENCES

escodegen esprima lazy.js
Base Context Err
subtyping base 151
subtyping poly 136
subtyping intersect 40
unions base 121
unions poly 106
unions intersect 25

Base Context Err
subtyping base 34
subtyping poly 36
subtyping intersect 32
unions base 32
unions poly 34
unions intersect 29

Base Context Err
subtyping base 78
subtyping poly 57
subtyping intersect 51
unions base 67
unions poly 56
unions intersect 51

minimist optparse qs
Base Context Err
subtyping base 162
subtyping poly 155
subtyping intersect 64
unions base 126
unions poly 122
unions intersect 64

Base Context Err
subtyping base 13
subtyping poly 17
subtyping intersect 8
unions base 14
unions poly 14
unions intersect 9

Base Context Err
subtyping base 94
subtyping poly 89
subtyping intersect 43
unions base 78
unions poly 73
unions intersect 40

typescript underscore xml2js
Base Context Err
subtyping base 290
subtyping poly 223
subtyping intersect 144
unions base 283
unions poly 217
unions intersect 128

Base Context Err
subtyping base 253
subtyping poly 231
subtyping intersect 65
unions base 208
unions poly 190
unions intersect 58

Base Context Err
subtyping base 47
subtyping poly 39
subtyping intersect 22
unions base 45
unions poly 39
unions intersect 27

Figure 16 Trend experiment results comparing type systems with and without unions, for various
models of polymorphism.

	Introduction
	Trace Typing by Examples
	Polymorphism
	Discriminating Unions

	Trace typing
	Trace Type Systems
	Traces
	Initial Type Ascription
	Type Merging and Propagation
	Type Checking

	Instantiations
	Core Type System
	Detecting Tag Tests
	Parametric Polymorphism
	Fixed Object Layout

	Implementation
	Experiments
	Benchmarks
	Comparing Type System Variants
	Finding Tag Tests
	Evaluating Fixed Object Layout

	Discussion
	Related work
	Conclusions
	Modeling the Native Environment
	Full Results for six Type Systems

