
Modal Verification Patterns for Systems Software
Ismail Kuru

ik335@drexel.edu
Drexel University

Philadelphia, PA, USA

Colin Gordon

csg63@drexel.edu
Drexel University

Philadelphia, PA, USA

Abstract
Although they differ in the functionality they offer, low-level

systems exhibit certain patterns of design and utilization of

computing resources. In this paper we examine how modali-

ties have emerged as a common structure in formal verifi-

cation of low-level software, and explain how many recent

examples naturally share common structure in the relation-

ship between the modalities and software features they are

used to reason about. We explain how the concept of a re-
source context (a class of system resources to reason about)

naturally corresponds to families of modal operators indexed

by system data, and how this naturally leads to using modal

assertions to describe resource elements (data in the relevant

context).

CCS Concepts: • Theory of computation→Modal and
temporal logics; Logic and verification; • Software and
its engineering → Operating systems.

Keywords: separation logic, modal logic, verification, oper-

ating systems

ACM Reference Format:
Ismail Kuru and Colin Gordon. 2025. Modal Verification Patterns for

Systems Software. In 13thWorkshop on Programming Languages and
Operating Systems (PLOS ’25), October 13–16, 2025, Seoul, Republic of
Korea. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3764860.3768337

1 Introduction
Although they differ in the functionality they offer, low-level

systems exhibit certain patterns of design and utilization of

computing resources. Systems software, in general, inter-

faces with an underlying computing substrate such that any

software system at any higher level in the software stack

can (at least indirectly) utilize the resources of the machine.

The last layer of software before the hardware is naturally

critical to the correctness of an overall system, as essentially

all software built on top of it assumes its correctness. And

because hardware is complex and highly diverse, the imple-

mentation of those lowest layers of the software stack is

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

PLOS ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2225-7/25/10

https://doi.org/10.1145/3764860.3768337

typically intricate and naturally error-prone, despite how

critical its correctness is. Typically systems software has, as a

primary focus, the task of abstracting from hardware details

to simplify the construction of higher layers of the stack.

Interacting with computing resources is the essential point

which shapes the design of low-level systems software. Ex-

ploiting these design choices has been an important field

of study. This survey examines these common patterns in

systems software, and their relationships to modalities. We

believe that certain properties of modalities enable us to

understand and address the verification challenges of these

systems by tailoring specification and proof to the same

patterns used to design the systems.

Contributions We argue that modal abstractions can be

used to identify and abstract system verification challenges.

We justify our perspective by discussing prior systems that

have successfully used modalities for system verification,

arguing that they fit into the verification design pattern we

articulate, and explaining how this approach might apply to

other systems’ verification challenges.

• Identifying System Verification Challenges: We

start with identifying common patterns in system ver-

ification: virtualization, sharing, and translation.
• IntroducingModalResource Contexts: Then we dis-
cuss the concept of resource which has already been an

essential concept in the design of systems. Inspired by

the concept of resource in systems, we define what a

resource and its context are in the modal abstractions.

For example, the transaction abstraction, which be-

haves like a container for in-memory dirty disk pages,

can be considered a resource context for any dirty

in-memory disk page resource associated with it.

• Introducing Nominals for System Resources: Ex-
isting logics for systems software must frequently

identify individual resources within a given context —

nominalization (in the sense of hybrid logic) enables

identifying a resource in its context. For example, a

filesystem transaction is a context of resources for in-

memory updated disk blocks which have not yet been

saved to disk. The transaction identifier is used to as-

sociate a transaction with a disk block to persist so

that, in case of a crash while persisting updated disk-

blocks, the filesystem can rollback the already persisted
disk-blocks of the transaction, and restore the previ-

ous consistent disk state. We discuss other examples

to contextualize the existing systems surveyed.

https://orcid.org/0000-0002-5796-2150
https://orcid.org/0000-0002-9012-4490
https://doi.org/10.1145/3764860.3768337
https://doi.org/10.1145/3764860.3768337
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3764860.3768337

PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea Kuru and Gordon

• Taxonomy of Current Modal Approaches in Sys-
tem Verification: Based on these concepts, we sum-

marize contemporary verification efforts using modal

abstractions. We choose them from different domains,

for example, reasoning about weak memory models

and storage persistence [7–9, 11, 15, 16, 21, 37, 53,

54] and using different programming logics such as

Iris [32] and Dafny [39] because we would like to jus-

tify that our definitions are neither domain nor pro-

gramming logic dependent.

2 Background on Modal Logics for
Programs, and Low-Level Systems
Software

This section briefly recalls related concepts from modal logic

of particular relevance to our taxonomy (Section 2.1), and

enough general background on the systems software con-

cepts organized by our taxonomy for the connections to

modalities to be clear (Section 2.2).

2.1 Hybrid Logic, Dynamic Logic, and Nominals in
Program Logics

Dynamic Logics as Program Logics. We believe that for

the kinds of informal reasoning and the sorts of data struc-

tures discussed in the previous section, ideas from modal

logic are a promising approach to formalization and veri-

fication. Broadly speaking modal logics incorporate modal
operators, which take as arguments a proposition expected

to be true in another time [44], place [3, 19–21, 40], circum-

stance or point-of-view [26, 29], and result in a proposition

true in the current time, place, or circumstance at which

the truth of the modal operator is being evaluated. Classic

examples include modal necessity □𝑃 describing that 𝑃 is

necessarily true, G(𝑃) meaning 𝑃 is true globally (i.e., for-

ever from this time onwards in temporal logics), or 𝐾𝑖 (𝑃)
describing that a particular participant 𝑖 knows that 𝑃 is true.

The latter is an example of multimodal logic, where there is
an family of modalities (modal operators) parameterized by

some dimension of interest (there, participants).

Dynamic logic [45], a (multi)modal logic variant of weakest

preconditions [2, 14, 23] which works with modalities of the

form [𝑝] (𝑃), which states that in the current program state,
if program 𝑝 is run then afterwards 𝑃 will hold (modulo

non-termination).

Hybrid Logic. Hybrid logics [3, 4, 6, 19, 20] are a class

of modal logics that add two primary new concepts to a

logic. Nominals ℓ ∈ Loc uniquely identify points in a model

(e.g., a particular state in the state space the logic is used

to reason about), so there is exactly one point in the model

where a nominal Loc (as a formula) is true. Satisfaction op-

erators are modal operators indexed by nominals, which

enable claims about the truth of another proposition at the

point in the model identified by a chosen nominal. Tradi-

tionally @ℓ𝜑 asserts that 𝜑 is true in the state identified by ℓ .

Conceptually, given our context, we might like 𝑙 to indicate

truth in a particular data structure ℓ . However, most prior

work on hybrid logics works in classical logics rather than a

substructural setting like separation logic. Newer work [7–

9, 11, 15, 16, 37, 53, 54]:w surveyed here adapts this idea to

deal with different structures specified in separation logic.

Nominalization. Some classes of assertions benefit specif-

ically from naming the explicit conditions where they are

true (as opposed to simply requiring them to be true some-
where or everywhere as in the most classic modal operators).

Because these named conditions strongly resemble the nom-

inals of hybrid logic, we refer to the general idea of naming

circumstances explicitly as nominalization, even though not

all of the examples we discuss are actually hybrid logics.

An example use of state naming explicitly in the asser-

tion appears in program logics with usage protocols (e.g.

state transition systems resembling typestate [18, 52], which

ensure the operations applied to some data occur in a speci-

fied order, and that invariants for various conceptual states

of the data — such as a file being open or closed — are re-

spected). Protocol assertions are annotated with the name
of the last (abstract) state at which the protocol is ensured.
A classic application of this idea to systems is Halpern et

al.’s work adapting modal logics of knowledge to deal with

distributed systems [24, 25, 27]. In most of that line of work,

K𝑎 (𝑃) indicates that the node 𝑎 in the system knows or pos-
sesses knowledge of 𝑃 (for example, a Raft node may “know” a

lower bound on the commit index). Alternatively, a modality

@𝑖 (𝑃) may represent that 𝑃 is true of/at the specific node

𝑖 [21] (e.g., that node 𝑖 has physically stored a certain piece

of data to reliable storage). These permit capturing specific

concepts relevant to the correctness (and reasoning about

correctness) of a certain class of systems, involving facts

about specific named entities in the system.

In each of these cases, the fact that these facts are described

using a modality 𝑀 with the core modal property that if

𝑃 ⇒ 𝑄 , then𝑀 (𝑃) ⇒ 𝑀 (𝑄). This means, for example, that

if a process 𝑝 knows that the commit index is greater than

5 (e.g., K𝑝 (commitIndex > 5)) no extra work is required to

conclude that the node knows it is greater than 3 (i.e., that

K𝑝 (commitIndex > 3)), because this follows from standard

properties of modal operators as described above. In contrast,

if verification instead used a custom assertion

minCommitIndex(5)
to represent the former knowledge, one would need to sepa-

rately provide custom reasoning to conclude

minCommitIndex(3)
As our survey shows, the value of the modal view (which

grants both intuitive specifications and natural reasoning

Modal Verification Patterns for Systems Software PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea

principles) is becoming apparent in systems software verifi-

cation.

2.2 Virtualization in Systems Software
One of the most common forms of abstraction provided

by systems software is virtualization, which abstracts the

relationship between conceptual and physical computing

resources. Upper-levels of the software stack workwith these

conceptual — virtual — resources, while the lower levels

of systems software deal with the translation of requests

expressed in terms of virtual resources into operations on

physical resources.

Operating System (OS) kernels virtualize memory loca-

tions and quantity (via virtual memory and paging [13]). Dis-

tributed language runtimes may virtualize addresses, even

when processes may migrate across machines [31]. Filesys-

tems virtualize locations on disk [5, 30, 49, 50]. Programs

built on top of the corresponding systems software layer

work logically at the level of these virtualized resources, and

it makes sense to specify the systems software directly in

terms of those abstractions.

Access by Translation. Accessing virtualized resources

via translation is a common way to virtualize notions of

location (e.g., virtual memory addresses, inodes or object

IDs instead of disk addresses [5, 30, 49, 50]). B-trees, page

tables, and related structures both behave like maps, when

the corresponding physical resources exist as such just in

a different location. Control over the lookup process (e.g,

handling the case of a missing translation entry) allows for

additional flexibility, such as filling holes in sparse files, or

demand paging (both from disk or lazily populating anony-

mous initially-zeroed mappings). Although the realization of

these maps may differ from system to system based on the

context (and sometimes hardware details), they are semanti-

cally — logically — partial maps, worth treating as such in

verification.

2.2.1 Virtualization of Memory Locations. A typical

general purpose computer virtualizes memory resources in

RAM. A program asking for a memory unit from an operat-

ing system kernel is served with a memory address that is

virtualized such that it may be mapped to a physical RAM
location or not. As our informal definition suggests, the com-

mon technique for virtualization of memory locations in OS

kernels relies on translating (mapping) virtual addresses into
physical ones. The conceptual address translation map is

implemented with processor’s page table trees as shown in

Figure 1. In this Figure, we see a typical 4 levels of page ta-

bles, a virtual address on the top indexing into the different

levels of the page table tree (the larger rectangles along the

bottom are blocks of memory which serve as nodes of the

tree along a particular lookup path). Fabrication of virtual

addresses out of limited physical addresses is provided with

entries in the page table tree where each points to a physical

Figure 1. x86-64 page table lookups.

address aligned to 4KB (4096 byte) boundaries. An address

translation requires traversal of a series of tables starting

from level 4. The traversal ends in the level 1 page table

with the final lookup to the actual page of physical memory

holding the requested data, and the low-order 12 bits being

used to index into this page.

A page table tree is referred to as a (virtual) address space,
as it presents an abstraction of how different memory ad-

dresses could be related in space. This functionality is used

by operating systems to present fictional collocation or sepa-

ration of resources: a range of logically (virtually) contiguous

memory addresses may be translated to a range of physically

disparate locations in actual memory. The address space then

acts as a kind of container for virtualized memory resources

tied to that container.

A typical OS manages multiple address spaces at once.

Each program is associated with a unique page table tree,

which is stored in a specific hardware register (cr3 in Fig-

ure 1). Using different mappings, which map only disjoint

portions of physical memory in the map’s codomain, is how

the OS ensures memory isolation between processes.

2.2.2 Virtualized Resources in Filesystems. Another
important computer resource that is virtualized for access

is disk blocks. Filesystems are software components that

abstract disk access on behalf of normal programs Similar to

how VMMs using page table trees to fabricate more memory

addresses than what actually exists, filesystems use indexing

maps for fabricating more virtual disk page addresses which
are conventionally called disk pages, to be distinguished from
physical disk block addresses. When a regular program ac-

cesses a file, it requests a specific logical offset from the start

of that file’s contents. As with virtual memory, the filesystem

may map adjacent logical blocks of a single file to physically

disparate parts of the disk (or even to different disks), though

this translation mapping is implemented entirely in software

(as opposed to the hardware cooperation that exists for mem-

ory virtualization).

Filesystems not only handle the address translation from

a disk-page to a disk-block but also need to handle different

modes of computingwhere to find disk resources: a disk block

may live on a disk in stable storage, or the most up-to-date

version of a blockmay live only inmemory (for the filesystem

to write to disk at a later time, batched for efficiency). To

handle the consistency of the disk resources in different

PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea Kuru and Gordon

modes of execution, filesystems employ different policies

when indexing the disk resource. Which data-structure is

going to be used to implement address translation from disk-

pages to disk-blocks?What is going to be the update policy to
the indexing map implementing address translation, which

defines the consistency policy for the disk resources? Different
filesystem implementations give different answers to these

questions.

While exceptions exist [5, 30, 49, 50], most filesystems will

continue to store a given block of a given file in the same

physical disk block for as long as the file exists. These filesys-

tems with in-place updates need to implement some form of

journalling [10, 22] to ensure that a crash partway through

an in-place update can be rolled back using an undo journal

that records the original contents before in-place modifica-

tion (so original contents could be restored after a crash) or

completed using a write-ahead journal that first writes new

data in unused space before also updating in place (so the

journal entries could be re-applied after a crash). Because

disk blocks associated with a file could now be in many states

(on-disk, journaled but not updated in place, or both) the

specification of these systems is complex. And because some

states are only possible after a system failure, each line of

filesystem code has two conceptual post-conditions: one re-

ferring to the successfully stored disk pages from a disk page

container (e.g, a disk tree) , which can be uniquely identified

by the last successful commit identifer (e.g., a transaction

identifier or snapshot identifier), as the current view of the

disk in the specification for continued execution, and one

referring to the previous view of the disk in the specification

for the stable state established in the event of a hardware

failure immediately after that operation.

2.2.3 Reference Counting Memory Reclamation. It is
safe to reclaim memory (for later reuse) when that memory

allocation will no longer be used by the client program. Since

that property itself is undecidable, sound heuristics are used

instead. A common proxy for the program never accessing

an allocation again is to check that there is no access path

from data a program can trivially access (e.g., local variables

stored on the stack) to a memory allocation — that is, when

the allocation is no longer reachable. In that case the program
cannot access the memory again, so the memory location

can be reclaimed soundly — i.e., without violating any access

through a reference to it.

To reclaim the allocated memory location that is no longer

being accessed, many systems use a well-known method

called reference counting in which each memory allocation

includes not only its data but also a counter of how many

pointers to that memory exist in the rest of the program. Any

time a new reference to the allocated memory is created, the

counter is incremented, and every time an existing refer-

ence is destroyed (by overwriting or dropping) the counter

is decremented.
1
These reference counts are a sound (but

incomplete) way to approximate reachability: if a decrement

of a reference count decrements the count to 0, no other

references to that memory exist in the program, and the

memory can be reclaimed.

Reasoning about the correctness of such code requires

reasoning about these reachability relations and reference

counts, relative to specific stack frames.

2.2.4 WeakMemoryModels. Multicore and multiproces-

sor systems do not directly write every memory update back

to memory (or even a coherent hardware cache) individually,

as this would be extremely slow. Instead, they effectively

buffer reads and writes to and from memory locally within

each CPU core [43]
2
so that operations can be partially re-

ordered and batched to improve performance. For most code

— where the different CPUs are doing independent work —

this is transparent to software. But fine-grained concurrent

systems code which has multiple CPU cores simultaneously

coordinating access to shared memory must reason about

these (effective) bufferings and reorderings, whose details

vary across CPU architectures.

Most of this coordination comes through reasoning about

what will be true after local operations are published to mem-
ory, or whatwill be true after remote operations become visible
locally [12, 15, 51]. Each of these flavors of contingent rea-

soning depend on use of certain fence or memory barrier
operations, which block execution of a CPU until either all

incoming or outgoing memory transactions are complete.

2.2.5 ActorModel. An alternative approach to addressing
the sharedmemory concurrency complication, i.e., data races,

is to use actors [1, 28] by eliminating shared mutable state

and enforcing updates on exclusive local mutable state via

exchanging immutable messages among processes. This is a

way of sequentializing the concurrent interleaved execution.

Often correctness of one actor depends on knowledge about
other actors. In a typical consensus algorithm, for example,

an operation is committed if a quorum of nodes reach an

agreement on it.

Therefore, as expected, the specification of an actor in

the current view would refer to the other actors’ states and

has to validate that the shared knowledge amongst actors is

preserved [21].

3 Contingency Decomposition of a System
In this section, we argue the position that modalities should
be a go-to approach when specifying and verifying low-level

systems code. We explain how the concept of a resource con-
text helps guide the design of new modalities for verification

1
This may be done using library functions for a reference counting system,

or the operations may be inserted by a compiler.

2
This is a layer below the better-known L1 cache, which is coherent across

all CPUs in the system.

Modal Verification Patterns for Systems Software PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea

of systems code, and we justify our perspective by discussing

prior systems that have used modalities for systems verifica-

tion successfully, arguing that they fit into the verification

design pattern we articulate, and explaining how this ap-

proach might apply to other systems verification challenges.

To explain our ideas in the general systems understanding,

we briefly recap some of the background and themes our

ideas build on again, casting them in a certain way to bring

out the relevance of our philosophy.

3.1 Encoding Modalities in Program Logics
Program logics whichwould like to enjoymodal propositions

need to have an underlying model that allows encoding of

the propositions. A Kripke model can be roughly seen as a

triple of set of worlds (e.g., program states), a binary relation

between worlds (e.g., transition relations between states) and

a state interpretation function. For a modality 𝑀 , 𝑀 (𝜙) is
true in one state/world𝑤 if states related to𝑤 by the binary

relation satisfy 𝑃 . Whether this is all related states, or just

one, or something else varies depending on what𝑀 is meant

to model, but the modality is always tied to the relation of

interest. For multimodal logics there are multiple relations.

For example, for Dynamic Logic, there is a modality for each

program, and the relation for running program “command”

(in old program logic parlance)𝐶 is the relationship between

states before and after executing 𝐶 .

Encoding Hoare Triples. Following Pratt’s original rep-
resentation [45], we can encode a Hoare triple {𝑃}𝐶{𝑄}
(asserting that if 𝑃 holds in some state, then executing𝐶 will

yield a state where 𝑄 holds) as 𝑃 → [𝐶] (𝑄). However, for
this to hold for a specific programming language and asser-

tion language, the modal representation requires a semantics

in terms of an underlying model.

Conventionally, a Kripke model with its constituent must

be picked. Gordon provides a Kripke model for an actor-

based hybrid modal logic [21], in which the transition re-

lation is indexed by a particular command and a particular

actor, relating pre- and post-states of a specific actor refer-

enced by a nominal executing the command. Gordon encodes

this hybrid logic as a library in the Dafny program logic [39]

with the help of two state invariants and rely-guarantee as-

sertions checking the stability of invariants. Wagner et al.

take a similar approach to the design of their separation logic

and utilize a Kripke model for reference-counted memory

reasoning principles [54].

On the other hand, program logics such as Iris [32] utilizes
Kripke models for their separation algebras (a collection of

CMRAs as an algebraic cousin of a BI-algebra [42]), modeling

modalities for both heap extension and step indexing [41].

However in general, many modalities can be given proof-

theoretic semantics directly within a logic. This is the case

for Iris’s weakest precondition modality (which is defined

within the Iris logic itself), as well as for a wide range of other

modalities in the literature [47]. These modalities are typi-

cally multi-modal, with a form of roughly𝑀 𝑐𝑡𝑥𝑡 𝜙 ≜ . . . →
𝜙 𝑐𝑡𝑥𝑡 , such that the evaluation of the modality incorporates

the 𝑐𝑡𝑥𝑡 arguments into the evaluation of 𝜙 .

Shallow Modalities in Separation Logic. In a substruc-

tural setting [35, 46] the implication → is typically replaced

with substructural implication −∗. This definition also reveals

a subtlety about the denotation of assertions 𝜙 — they are

effectively predicates of some kind, functions from some pos-

sible world into some logical algebra such as a BI-algebra [42].

Taking this interpretation literally gives rise to a convenient

way to embed new modalities in Iris in a way well-suited

to many use cases. If 𝐵 is a type with a BI-algebra struc-

ture, then any space of predicate functions (e.g., val → 𝐵

as a simplification) also carries a BI-algebra structure, lifted

from 𝐵, often called the pointwise lifting of the algebra. A

number of projects for systems software verification [7–

9, 11, 15, 16, 37, 53, 54] now take advantage of this, explicitly

or implicitly lifting the BI-algebra structure from Iris itself to
Iris predicates used as assertions within modalities. Connect-

ing this to Iris’s typeclasses for interactive proofs [34, 36]
then permits working within the embedded logic just as if

working in Iris.
In addition, the modal definitions themselves may repre-

sent ownership of resources in a substructural setting [17, 33,

46]. This allows modalities to simultaneously represent own-

ership of certain resources used for interpreting the modality

itself, as well as whatever resource ownership is implied by

the modal argument.

3.2 Decomposing a System into its Constituents
Contingently

Many existing program logics for system verifications have

a common structure, which maps to modalities with a couple

extra dimensions of design. We summarize our discussion of

these logics in Table 1. We discuss, based on examples, com-

mon aspects of how we intuitively think about correctness

of systems code in many contexts, articulate those pieces,

and call out the commonalities across a range of systems.

3.3 Resource
Consider first the address space abstraction in an OS ker-

nel. An address space of a process is a container of virtual
addresses referencing data in memory. One would expect

to have points-to assertions from separation logic to specify

ownership of a memory reference pointing to some data. In

the classic setting [48], such a points-to assertion 𝑥 ↦→ 𝑣 as-

serts ownership of memory location 𝑥 , and that the contents

of that memory location are 𝑣 . But that ownership is relative

to a specific address space — a specific container. We tend

to think directly about what is true in an address space, with
the simplest piece being an association between a virtual

PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea Kuru and Gordon

Table 1. Modal Decomposition of Program-Logics.

Modality Context Elements Nominalization Context Steps

Post-Crash [7–9] ^ 𝑃 ℓ ↦→𝛾
𝑛 𝑣 Strong Crash Recovery

NextGen [53]

𝑡
↩→ 𝑃 Own (t(a)) Strong Determined Based on the

Model
∗

StackRegion
∗
[53]

𝐼𝐶𝑢𝑡𝑛

↩→ 𝑃 n ℓ ↦→ 𝑣 Strong Alloc and Return to/from stack

Actor [21] @𝜄 P Variable values Weak Send Message

Memory-Fence [11, 15, 16] △𝜋 and ▽𝜋 ℓ ↦→ 𝑣 Weak Fence Acquire and Release

Address Space [37] [r]P ℓ ↦→ 𝑣 Weak Address Space Switch

Ref-Count [54] @ℓ P ℓ1 ↦→ 𝑣 Weak Allocating, Dropping and Shar-

ing a Reference

*The StackRegion Modality is an instance of NextGen (called the Independence Modality in [53]).

address and the data it points to. We call the simplest piece,

in this and other examples, the resource element:

Definition 3.1 (Resource Elements). The simplest atomic

facts we want to work with in a particular setting, specific

to that setting.

By definition, the resource elements are specific to some

limited domain or setting. For example, knowing that a cer-

tain address points to a 32-bit signed integer representing 3

is knowledge restricted to a certain address space. In general,

we call these domains that any resource element is tied to

resource contexts:

Definition 3.2 (Resource Context). A resource context is

an abstraction, context, or container of resource elements of

the same type, e.g., an address space of a process.

We discuss a range of examples for each of these in turn.

Table 1 gives additional examples of systems and their

corresponding resource elements and contexts where these

elements reside, though none of the work in that table ana-

lyzes itself according to the structure we are giving.

Except for the Post-Crash-Modality, one can think of the

resource contexts in the first column in Table 1 as contain-

ers for the corresponding resource elements in the second

column.

Stack Regions. When reasoning about stack frame con-

tents, the resource element would be a stack-memory points-

to assertion (n ℓ ↦→ 𝑣) indicating that a certain offset into

stack region𝑛 holds value 𝑣 . The regions (frames) themselves

are the contexts.

Virtual Memory. For virtual memory management, a

virtual-points-to, ℓ ↦→ 𝑣 , is an ownership assertion pairing a

virtual address (ℓ) with data (𝑣) in an address space, which is

a resource context for virtual address mappings, ℓ ↦→ 𝑣 , and

uniquely identified with a root address. Logically, specifying

an address space switch [37] from the address space with

the root address 𝑟2 to the one with the root address 𝑟1

{[𝑟1]𝑃 ∗𝑄}𝑐𝑟3 := 𝑟1{𝑃 ∗ [𝑟2]𝑄}cr3

requires having the resource elements loaded into the mem-

ory

𝑃 ≜ ℓ1 ↦→ 𝑣 ...

to be in the resource context of the address space modal-

ity with the root 𝑟1, and, once the new address space is

loaded—i.e., cr3 is loaded with the other address space root

address—the resource elements (𝑄) that were loaded in the

previous view of the memory are now introduced to the

resource context with the root 𝑟2.

Weak-Memory. When considering weak memory models,

we consider address-value mappings of thread-local views in

C11 memory model [38]). Modalities Δ𝜋 (𝑃) and ∇𝜋 (𝑃) with
𝑃 represent the memory address-value mappings that held

before or will hold after certain memory fence operations by

thread 𝜋 . The elements are points-to assertions, each specific

to views of memory after those fence operations.

Reference Counting. When dealing with reference count-

ing APIs, we may care to specify reachability of memory

nodes (ℓ ↦→ 𝑣) in a certain context defined by a shared root

address. A shared memory address ℓ can be the root of the

graph (@ℓ (ℓ1 ↦→ 𝑣1 ∗ ... ∗ ℓ𝑗 ↦→ 𝑣 𝑗)) that can be a container

of memory nodes (ℓ1 ↦→ 𝑣) that are reachable from the root

ℓ .

Actors. When specifying the consistency of an actor in

the current view, we need to refer to other actors’ state:

@𝜄 (𝑃) asserts that 𝑃 is true in the actor referenced actor ID

𝜄. Assertions may mention local variables and state at the

designated actor by name, so the interpretation of variables

in assertions depends on which actor the assertion applies

to.

Post-Crash. The resource element of Post-Crash Modal-

ity is not obvious in Table 1, and needs a bit of explanation.

Perennial, based on the Iris logic, has both disk-points-to

assertions 𝑑 [p] ↦→𝑛 𝑣 (for a specific disk 𝑑) and in-memory

points-to assertions ℓ ↦→𝛾
𝑛 . Perennial crash-recovery logic

book-keeps resource names (can be thought of as logical

Modal Verification Patterns for Systems Software PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea

variables) 𝛾 to identify which assertions (resource elements)

remain valid after a crash — these assertions are only usable

while the names in 𝛾 are valid, and a crash resets them, dis-

carding assumptions about volatile state. A subtlety of the

notion of a resource context is that, unlike the earlier exam-

ples, the context does not need to be a literal data structure.

It can instead be (various forms of) a set of executions, as

in the Post-Crash and NextGen modalities. The Post-Crash

modality ⋄ expresses that the assertion 𝑃 will be true after

a crash discards all unstable storage (i.e., RAM). This was

the inspiration for the NextGen modality, which is in fact

a framework for defining “after-𝑡” modalities, where 𝑡 is an

transformation of the global state.
3

3.4 Nominals for Systems Resource Contexts
Finally, another design point is the question of whether or

not resource element assertions must explicitly track their

corresponding context, or if they implicitly pick up their

context from where they are used.

Strong nominalization is the case where resource elements

must explicitly include the identity of their intended context,

while weak nominalization occurs when the resource ele-

ments implicitly pick up the relevant context from how they

are used. The first three modalities in Table 1 are strongly

nominalized, with the resource elements generally carrying

identifiers of a specific modality usage.
4
The rest are weakly

nominalized.

This choice trades off complexity against flexibility and

scoping constraints. Strongly nominalized elements track

additional specifier/prover-visible book-keeping data. But in

exchange for carrying those identifiers of their context with

them, strongly nominalized elements can be used together

under any modality. For example, one can use the StackRe-

gion modality to talk about two different stack frames si-

multaneously for code which accesses multiple stack frames:

n ℓ ↦→ 𝑣 ∗ n+1 ℓ ′ ↦→ 𝑣 ′. Using a given strongly nominal-

ized assertion element under differentmodalities for different

frames does not change its meaning. Likewise, weak-memory

specific modalities existentially quantify over other views,

related to the “current” view (the one where the current

thread’s assertions are evaluated), and evaluate a resource (a

thread-local view of an address-value mapping) with respect

to those other views. Given that views are identified by nom-
inals, referring to all the other views makes weak-memory

modalities strongly nominalized.

By contrast, weakly nominalized elements are more con-

cise, but then make talking about multiple contexts together

marginally more complex: changing which modality an as-

sertion is used with drastically changes its meaning. In the

3
The transformations are subject to some technical constraints that are

unrelated to our point here.

4
The Post-Crash modality does not look like this in the presentation here;

technically the definition of ⋄ quantifies over names 𝛾 internally, dealing

with sets of possible contexts.

case of the Ref-Count modality, @ℓ (ℓ1 ↦→ 𝑣) says that ℓ
points to a reference count wrapping ℓ1, while placing the

ℓ1 ↦→ 𝑣 under a jump modality for a different location entails

talking about a different region of memory.

In general, use cases where code frequently manipulates

small parts of multiple contexts together should prefer strong

nominalization, while use cases where usually larger por-

tions of a single context are at issue should prefer weak

nominalization.

4 Conclusion
Wehave argued that there is a systematic pattern emerging in

the use of modalities in the verification of low-level systems

software, and explained how a range of modernwork fits into

this pattern. While most of our examples come from public

verification work carried out in Iris, we have one example

of these ideas applying in Dafny. We are applying these

ideas in ongoing work using different modalities for different

parts of a copy-on-write filesystem (e.g., for assertions true

in different snapshots), and are observing more structured

specifications as a result. So not only are the modalities

observably present, but they are demonstrably useful for

conducting proofs of systems software. We believe that these

essential patterns in the designs of modal abstractions for

systems verification constitute a fundamental concept when

working out how to specify different kinds of systems code.

References
[1] Gul Agha. 1986. Actors: a model of concurrent computation in distributed

systems. MIT press.

[2] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner H ähnle,

and Mattias Ulbrich. 2025. The Many Uses of Dynamic Logic. In Go
Where the Bugs Are: Essays Dedicated to Wolfgang Reif on the Occasion
of His 65th Birthday. Springer, 56–82.

[3] Carlos Areces, Patrick Blackburn, and Maarten Marx. 2001. Hybrid

logics: Characterization, interpolation and complexity. The Journal of
Symbolic Logic 66, 3 (2001), 977–1010.

[4] Patrick Blackburn and Jerry Seligman. 1995. Hybrid languages. Journal
of Logic, Language and Information 4, 3 (1995), 251–272.

[5] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee, and Mark

Shellenbaum. 2003. The Zettabyte File System. In Proc. of the 2nd
Usenix Conference on File and Storage Technologies (USENIX FAST).

[6] Torben Braüner. 2010. Hybrid logic and its proof-theory. Vol. 37.
Springer Science & Business Media.

[7] Tej Chajed. 2022. Verifying a concurrent, crash-safe file system with
sequential reasoning. Ph.D. Dissertation. Machetutes Institute of Tech-

nology, Cambridge, MA. Available at https://dspace.mit.edu/handle/
1721.1/144578.

[8] Tej Chajed, Joseph Tassarotti, and Contributors. 2023. Post-crash

modality in Perennial’s Coq Mechanization. https://github.com/mit-
pdos/perennial/blob/master/src/goose_lang/crash_modality.v

[9] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zel-

dovich. 2019. Verifying concurrent, crash-safe systems with Peren-

nial. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (Huntsville, Ontario, Canada) (SOSP ’19). Association for

Computing Machinery, New York, NY, USA, 243–258. doi:10.1145/
3341301.3359632

 https://dspace.mit.edu/handle/1721.1/144578
 https://dspace.mit.edu/handle/1721.1/144578
https://github.com/mit-pdos/perennial/blob/master/src/goose_ lang/crash_modality.v
https://github.com/mit-pdos/perennial/blob/master/src/goose_ lang/crash_modality.v
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.1145/3341301.3359632

PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea Kuru and Gordon

[10] Sailesh Chutani, Owen TAnderson, Michael L Kazar, BruceW Leverett,

W Anthony Mason, and Robert N Sidebotham. 1992. The Episode file

system. In Proceedings of the USENIX Winter 1992 Technical Conference.
San Fransisco, CA, USA, 43–60.

[11] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek

Dreyer. 2019. RustBelt meets relaxed memory. Proc. ACM Program.
Lang. 4, POPL, Article 34 (Dec. 2019), 29 pages. doi:10.1145/3371102

[12] Hoang-Hai Dang, Jaehwang Jung, Jaemin Choi, Duc-Than Nguyen,

William Mansky, Jeehoon Kang, and Derek Dreyer. 2022. Compass:

strong and compositional library specifications in relaxed memory

separation logic. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. 792–
808.

[13] Peter J. Denning. 1970. Virtual Memory. ACM Comput. Surv. 2, 3 (Sept.
1970), 153–189. doi:10.1145/356571.356573

[14] Edsger W. Dijkstra. 1975. Guarded commands, nondeterminacy and

formal derivation of programs. Commun. ACM 18, 8 (1975), 453–457.

http://doi.acm.org/10.1145/360933.360975
[15] Marko Doko and Viktor Vafeiadis. 2016. A Program Logic for C11

Memory Fences. In Proceedings of the 17th International Conference on
Verification, Model Checking, and Abstract Interpretation (St. Petersburg,
FL, USA). doi:10.1007/978-3-662-49122-5_20

[16] Marko Doko and Viktor Vafeiadis. 2017. Tackling Real-Life Relaxed

Concurrencywith FSL++. In Programming Languages and Systems: 26th
European Symposium on Programming, ESOP 2017 (Uppsala, Sweden).

doi:10.1007/978-3-662-54434-1_17
[17] Kosta Došen. 1992. Modal translations in substructural logics. Journal

of Philosophical Logic 21, 3 (1992), 283–336.
[18] Ronald Garcia, Éric Tanter, Roger Wolff, and Jonathan Aldrich. 2014.

Foundations of typestate-oriented programming. ACM Transactions
on Programming Languages and Systems (TOPLAS) 36, 4 (2014), 1–44.

[19] George Gargov and Valentin Goranko. 1993. Modal logic with names.

Journal of Philosophical Logic 22, 6 (1993), 607–636.
[20] Valentin Goranko. 1996. Hierarchies of modal and temporal logics

with reference pointers. Journal of Logic, Language and Information 5,

1 (1996), 1–24.

[21] Colin S Gordon. 2019. Modal assertions for actor correctness. In

Proceedings of the 9th ACM SIGPLAN International Workshop on Pro-
gramming Based on Actors, Agents, and Decentralized Control. 11–20.

[22] Robert Hagmann. 1987. Reimplementing the Cedar file system us-

ing logging and group commit. In Proceedings of the eleventh ACM
Symposium on Operating systems principles. 155–162.

[23] Reiner Hähnle. 2022. Dijkstra’s Legacy on Program Verification (1 ed.).

Association for Computing Machinery, New York, NY, USA, 105–140.

https://doi.org/10.1145/3544585.3544593
[24] Joseph Y Halpern. 2017. Reasoning about uncertainty. MIT press.

[25] Joseph Y Halpern and Ronald Fagin. 1989. Modelling knowledge and

action in distributed systems. Distributed computing 3 (1989), 159–177.
[26] Joseph Y Halpern and Yoram Moses. 1985. A guide to the modal

logics of knowledge and belief. In Proceedings of the 9th international
joint conference on Artificial intelligence-Volume 1. Morgan Kaufmann

Publishers Inc., 480–490.

[27] Joseph Y Halpern and Yoram Moses. 1990. Knowledge and common

knowledge in a distributed environment. Journal of the ACM (JACM)
37, 3 (1990), 549–587.

[28] Carl Hewitt, Peter Bishop, Irene Greif, Brian Smith, Todd Matson, and

Richard Steiger. 1973. Actor induction and meta-evaluation. In Proceed-
ings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (Boston, Massachusetts) (POPL ’73). As-
sociation for Computing Machinery, New York, NY, USA, 153–168.

doi:10.1145/512927.512942
[29] Jaakko Hintikka. 1962. Knowledge and belief. Cornell University Press.
[30] Dave Hitz, James Lau, and Michael A Malcolm. 1994. File System

Design for an NFS File Server Appliance.. In USENIX Winter, Vol. 94.

[31] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. 1988.

Fine-grained mobility in the Emerald system. ACM Transactions on
Computer Systems (TOCS) 6, 1 (1988), 109–133.

[32] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars

Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modular

foundation for higher-order concurrent separation logic. Journal of
Functional Programming 28 (2018), e20.

[33] Norihiro Kamide. 2002. Kripke semantics for modal substructural

logics. Journal of Logic, Language and Information 11, 4 (2002), 453–

470.

[34] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti,

Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud, and Derek

Dreyer. 2018. MoSeL: A general, extensible modal framework for

interactive proofs in separation logic. Proceedings of the ACM on
Programming Languages 2, ICFP (2018), 1–30.

[35] Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek

Dreyer, and Lars Birkedal. 2017. The essence of higher-order con-

current separation logic. In European Symposium on Programming.
Springer, 696–723.

[36] Robert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive

proofs in higher-order concurrent separation logic. In Principles of
Programming Languages (POPL). http://cs.au.dk/~birke/papers/ipm-
conf.pdf

[37] Ismail Kuru and Colin S. Gordon. 2025. Modal Abstractions for Virtu-

alizing Memory Addresses. Proceedings of the ACM on Programming
Languages 9, OOPSLA2 (2025). doi:10.1145/3763134

[38] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek

Dreyer. 2017. Repairing sequential consistency in C/C++ 11. In Proceed-
ings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation. 618–632.

[39] K Rustan M Leino. 2010. Dafny: An automatic program verifier for

functional correctness. In Logic for Programming, Artificial Intelligence,
and Reasoning. Springer, 348–370.

[40] Tom Murphy, Karl Crary, Robert Harper, and Frank Pfenning. 2004.

A symmetric modal lambda calculus for distributed computing. In

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer
Science, 2004. IEEE, 286–295.

[41] Hiroshi Nakano. 2000. A Modality for Recursion. In Logic in Computer
Science (LICS). 255–266. http://www602.math.ryukoku.ac.jp/~nakano/
papers/modality-lics00.ps.gz

[42] Peter W O’Hearn and David J Pym. 1999. The logic of bunched impli-

cations. Bulletin of Symbolic Logic 5, 2 (1999), 215–244.
[43] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A better x86

memory model: x86-TSO. In Theorem Proving in Higher Order Logics.
Springer, 391–407.

[44] Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual
Symposium on Foundations of Computer Science (FOCS 1977). ieee, 46–
57.

[45] Vaughan R Pratt. 1976. Semantical consideration on Floyd-Hoare logic.

In Foundations of Computer Science, 1976., 17th Annual Symposium on.
IEEE, 109–121.

[46] Greg Restall. 1993. Modalities in substructural logics. Logique et
Analyse 36, 141/142 (1993), 25–38.

[47] Greg Restall. 2002. An introduction to substructural logics. Routledge.
[48] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable

Data Structures. In Proceedings of the 17th Annual IEEE Symposium on
Logic in Computer Science (LICS ’02). IEEE Computer Society, Washing-

ton, DC, USA, 55–74. http://dl.acm.org/citation.cfm?id=645683.664578
[49] Ohad Rodeh, Josef Bacik, and Chris Mason. 2013. BTRFS: The Linux

B-Tree Filesystem. ACM Trans. Storage 9, 3, Article 9 (Aug. 2013),

32 pages. doi:10.1145/2501620.2501623
[50] Mendel Rosenblum and John K. Ousterhout. 1992. The Design and

Implementation of a Log-structured File System. ACM Trans. Comput.
Syst. 10, 1 (Feb. 1992), 26–52. doi:10.1145/146941.146943

https://doi.org/10.1145/3371102
https://doi.org/10.1145/356571.356573
http://doi.acm.org/10.1145/360933.360975
https://doi.org/10.1007/978-3-662-49122-5_20
https://doi.org/10.1007/978-3-662-54434-1_17
https://doi.org/10.1145/3544585.3544593
https://doi.org/10.1145/512927.512942
http://cs.au.dk/~ birke/papers/ipm-conf.pdf
http://cs.au.dk/~ birke/papers/ipm-conf.pdf
https://doi.org/10.1145/3763134
http://www602.math.ryukoku.ac.jp/~ nakano/papers/modality-lics00.ps.gz
http://www602.math.ryukoku.ac.jp/~ nakano/papers/modality-lics00.ps.gz
http://dl.acm.org/citation.cfm?id=645683.664578
https://doi.org/10.1145/2501620.2501623
https://doi.org/10.1145/146941.146943

Modal Verification Patterns for Systems Software PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea

[51] Filip Sieczkowski, Kasper Svendsen, Lars Birkedal, and Jean Pichon-

Pharabod. 2015. A separation Logic for Fictional Sequential Consis-

tency. In European Symposium on Programming. Springer, 736–761.
[52] Robert E Strom and Shaula Yemini. 1986. Typestate: A programming

language concept for enhancing software reliability. IEEE transactions
on software engineering 1 (1986), 157–171.

[53] Simon Friis Vindum, Aïna Linn Georges, and Lars Birkedal. 2025. The

Nextgen Modality: A Modality for Non-Frame-Preserving Updates in

Separation Logic. In Proceedings of the 14th ACM SIGPLAN International
Conference on Certified Programs and Proofs (Denver, CO, USA) (CPP
’25). 83–97. doi:10.1145/3703595.3705876

[54] Andrew Wagner, Zachary Eisbach, and Amal Ahmed. 2024. Realistic

Realizability: Specifying ABIs You Can Count On. Proc. ACM Program.
Lang. 8, OOPSLA2, Article 315 (Oct. 2024), 30 pages. doi:10.1145/
3689755

https://doi.org/10.1145/3703595.3705876
https://doi.org/10.1145/3689755
https://doi.org/10.1145/3689755

	Abstract
	1 Introduction
	2 Background on Modal Logics for Programs, and Low-Level Systems Software
	2.1 Hybrid Logic, Dynamic Logic, and Nominals in Program Logics
	2.2 Virtualization in Systems Software

	3 Contingency Decomposition of a System
	3.1 Encoding Modalities in Program Logics
	3.2 Decomposing a System into its Constituents Contingently
	3.3 Resource
	3.4 Nominals for Systems Resource Contexts

	4 Conclusion
	References

