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Virtual memory management (VMM) code is a critical piece of general-purpose OS kernels, but verification of
this functionality is challenging due to the complexity of the hardware interface (the page tables are updated
via writes to those memory locations, using addresses which are themselves virtualized). Prior work on
verification of VMM code has either only handled a single address space, or trusted significant pieces of
assembly code.

In this paper, we introduce a modal abstraction to describe the truth of assertions relative to a specific virtual
address space: [r]P indicating that P holds in the virtual address space rooted at r. Such modal assertions allow
different address spaces to refer to each other, enabling complete verification of instruction sequences manipu-
lating multiple address spaces. Using them effectively requires working with other assertions, such as points-to
assertions about memory contents — which implicitly depend on the address space they are used in. We there-
fore define virtual points-to assertions to definitionally mimic hardware address translation, relative to a page
table root. We demonstrate our approach with challenging fragments of VMM code showing that our approach
handles examples beyond what prior work can address, including reasoning about a sequence of instructions
as it changes address spaces. Our results are formalized for a RISC-like fragment of x86-64 assembly in Rocq.
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1 Introduction

Virtual memory management lies at the core of modern OS kernel implementation. It is deeply
intertwined with most other parts of a typical general-purpose OS kernel design, including sched-
uling, hardware drivers, and even the filesystem buffer cache. In writing the authoritative reference
on the internals of the Solaris kernel, McDougall and Mauro went so far as to claim that “the virtual
memory sub-system can be considered the core of a Solaris instance, and the implementation of Solaris
virtual memory affects just about every other subsystem in the operating system” [59]. This makes
support for verification the virtual memory management subsystem of an OS kernel critical to the
correctness of every other piece of an OS or any software running atop it.

At its core, the virtual memory functionality of modern CPUs is about location virtualization: the
memory locations (addresses) seen by most code are not, in fact, the exact location in physical mem-
ory where data reside. Instead these are virtual addresses, which are mapped to actual physical re-
sources by the cooperation of the hardware and OS. This is what enables separation of process mem-
ory resources: the OS manipulates hardware functionality to ensure program memory accesses only
succeed if the kernel has granted the program access to the accessed address. But this is complicated
by the fact that control over these mappings of virtual to physical addresses is itself mediated by in-
memory data structures, which the kernel also accesses via virtual address, leading to indirect cycles.
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356:2 Kuru and Gordon

Further complicating matters, addresses themselves bear no information about which address
space they originate from. This is not a problem for usermode code, which only accesses its own
address space. But the kernel has (or can grant itself) access to all address spaces. Mixing up
addresses from different address spaces leads to severe bugs. Proofs of kernel correctness must
also track which assertions hold in different address spaces: some assertions should hold across all
address spaces, while others hold in only one, and others may hold in multiple but still not all.

This kind of context-dependent assertion, where a fact may be true in one address space but not
others, has a modal flavor. We propose tackling the verification of virtual memory subsystems (and
kernels more broadly) by adapting ideas from hybrid modal logic, which can label assertions true
under other, named circumstances (i.e., in another address space) with a modality indexed by a name
for that space (in our case, the root of the page tables for an address space). This offers a convenient
and powerful way to modularly isolate assertions specific to a particular address space, explicitly
state when an assertion is true across address spaces, manipulate address spaces from within other
address spaces, and reason about change in address spaces. This approach to reasoning about virtual
memory is more flexible than prior program logic techniques [51, 52], which were only able to
work with a single address space (the current address space on the CPU) because they were unable
to speak directly within the logic about other address spaces, in addition to handling the non-local
effects of page table updates whether within the current address space or across address spaces.

Contributions. We develop these ideas in the form of a logic for working with virtual-address-
space-relative assertions, implemented as an embedded separation logic within Ir1s [48]. The
result is a separation logic that lifts a number of major semantic restrictions present in the few
prior logics tackling virtual address translation. The logic we develop covers core reasoning
principles for reasoning about memory configurations and code reliant upon or manipulating those
memory configurations in the presence of in-memory page tables, the primary memory protection
mechanism across Intel/AMD’s x86-64 processors; ARM’s application class processors including
AArch64 CPUs; as well as POWER, RISC-V, and other architectures. We prove the soundness of
our vProp logic with respect to a RISC-like fragment of AMD64 instructions. We verify simplified
versions of several critical virtual-memory-related pieces of OS functionality, including: switching
address spaces, converting physical addresses to virtual addresses for software page table walks,
and a complete software page table walk — the backbone of other essential functionalities of
virtual-memory which we discuss for mapping and unmapping pages. These examples demonstrate
the suitability and flexibility of a modal treatment of address spaces: each has a concise specification,
each example either goes beyond the technical capabilities of prior logics, or revisits an example
from prior work in much greater detail (e.g., verifying critical and challenging supporting code
that was axiomatized or treated as out-of-scope in prior work). Our proofs are available [53].

2 Background

This section briefly recalls both fundamentals of page-table-based address translation in general-
puspose OS kernels, high-level background on separation logics and the Ir1s [48] framework we
build on, and some material on modal logic that informs our development.

2.1 Machine Model

In typical system configurations, all memory addresses seen by programs running on modern
computers are virtualized: the address observed by a running program generally will not correspond
directly to the physical location in memory, and may not even correspond to a physical location
that exists in the machine. Instead, these virtual addresses are translated to physical addresses
that correspond directly to locations in RAM. On most modern architectures, this translation is
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Fig. 1. x86-64 hardware address translation.

pte_t «pte_get _next_table(pte_t «entry) {
pte_t «next;
if (lentry—>present) { // Check if entry needs initialization
pte_initialize(entry); // Alloc empty table for next level

1 pte_t «walkpgdir(pte_t «root, void «va){
2 pte_t +14_entry = &root[L4OfTset(va)];
3 pte_t «I3 = pte_next_table(l4_entry);
entry—->present = 1; // Mark valid 4 pte_t «13_entry = &I3[L3Offset(va)];
} 5 pte_t «12 = pte_next_table(13_entry);
/+ Convert phys. addr. from PTE to virt. addr. for access +/ 6 pte_t +12_entry = &I2[L20ffset(va)];
uintptr_t next_phys_addr = PTE_PFN_TO_ADDR(entry->pfn) 7 pte_t +11 = pte_next_table(12_entry);
9 uintptr_t next_virt_addr = (uintptr_t) P2V(next_phys_addr); g pte_t «11_entry = &l1[L10ffset(va)];
9

10 next = (pte_t «) next_virt_addr; return 11_entry
11 return next; 10 }
12}

Fig. 2. Most of a software page table walk in C, as used to map new pages.

performed through cooperation of the hardware and OS kernel: while executing an instruction that
dereferences a (virtual) address, the CPU’s memory management unit (MMU) hardware performs
address translation, resulting in a physical address used to access the cache! and/or memory-bus.
On the x86-64 architecture, the MMU’s address translation uses a sparse hierarchical set of
tables: page tables (referring to pages of memory). As Figure 1 (based on Figure 5-17 of the AMD64
architecture manual [4]?) shows, address translation proceeds by repeatedly taking designated
slices of the virtual address and indexing into successive tables of 512 8-byte entries (making each
table 4KB in size). The final lookup in the page tables gives the base physical address of a 4KB
page of physical memory accessible to the running program, to which the low-order 12 bits of the
accessed virtual address are added to determine the actual physical address retrieved. On x86-64,
standard configurations use 4 levels of page tables, labelled levels 4 through 1, with lookups in
the level 1 page table resulting in the actual page of physical memory holding the requested data,
and the low-order 12 bits being used to index into this page.® The translation process or algorithm
is often referred to as a page-table walk. While Figure 1 and most of our constants (how many
levels, which virtual address bits index which table levels) are specific to common x86-64 CPUs,
it is straightforward to adapt our approach to ARMv8/aarch64, RISC-V, or PowerPC, which use
nearly-identical page table structures (only the order of flag bits in the entries differ), or to 5-level
paging present in newer x86-64 or RISC-V designs (one step would be iterated an additional time).

Technically, for performance reasons most caches are indexed with parts of the virtual address, but tagged with the physical
data addresses, so cache lookups and address translations can proceed in parallel.

2While x86 up through its 32-bit incarnation were due to Intel, the x86-64 architecture as a 64-bit extension to x86 was
originally due to AMD. As a result, it is sometimes also referred to as the amd64 architecture.

3Technically levels 1-3 have explicit historical names, but for brevity and consistency, we simply number them, in keeping
with the newer 5th level. Our formalization only deals with 4-level page tables, but is straightforwardly extensible to 5.
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The entries (e.g., L4 Entry in Figure 1) of each table are 64 bits wide, but each points to a physical
address aligned to 4KB (4096 byte) boundaries, leaving 12 bits to spare to control a validity bit (called
the present bit), a read-write bit (enabling write access), and a range of additional bits which can be
used to control caching, write-through, and more. This paper will only consider the present bit (0).

The page tables are managed by the OS kernel’s virtual memory manager (VMM).* Typically each
process has its own page tables, which the OS registers with the CPU by storing the (page-aligned)
physical address of the root of the page table tree (the start of the L4 table shown as root in Figure
1) in a specific register (cr3) as part of switching to a new process. Using different mappings, which
map only disjoint portions of physical memory (with some exceptions in the next section) is how
the OS ensures memory isolation between processes. If an instruction is executed that accesses a
virtual address that either has no mapping, or does not have a mapping permitting the kind of access
that was performed (e.g., the instruction was a memory write, but the relevant address range was
marked read-only in the relevant page table entry), the hardware triggers a page fault, transferring
control to a page fault handler registered with the hardware by the OS, allowing it to take corrective
action. If no mapping was supposed to exist, this is a program bug (e.g., dereferencing virtual
address 0 / NULL) and the faulting program should be terminated. But this can also be used for
other purposes such as demand paging to save on IO and better-manage physical memory [34].

The key pieces of VMM functionality are adding a new page mapping (whether the mapped page
contains zeros, file data, or swap data), and removing an existing page mapping. While this initially
sounds like relatively modest functionality whose implementation may be complicated by hardware
subtleties, correctness of even these basic operations are actually quite intrictate. Notably, updates
to the page tables are performed as writes to memory — which are themselves subject to address
translation, and finding the correct page table to update requires converting between physical and
virtual addresses. In the case of changing the mappings for the currently-active set of page tables,
the OS kernel is modifying the tables involved in its own access of the tables. To get a sense of how
subtle the required reasoning is, we can consider code such as Figure 2, used in our evaluation to
locate the appropriate L1 entry to map a page into the current address space. walkpgdir (right)
essentially mimics the hardware address translation up to the L1 entry (its caller will modify the
entry to map a new page), indexing into each successive table (e.g., with L40ffset(va) retrieving
the L4 offset of Figure 1), with pte_get_next_table (left) fetching the base address of the next
table from each entry. If, as shown in Figure 1, an entry such as the L2 entry is uninitialized (the
present flag is not set), pte_get_next_table allocates the next table on Line 4 and marks it valid on
Line 5. But there is a critical difference from hardware: every memory access in Figure 2 uses virtual
addresses, as opposed to hardware’s direct physical memory access. Thus pte_get_next_table
uses the P2V (physical-to-virtual) macro on line 9 to convert physical addresses stored in page
table entries into virtual addresses which the kernel can use to access the corresponding physical
location. Proving it correct requires proving that it yields an address that is not only mapped, but
known to map back to the original physical address! Verifying this code is beyond the reach of prior
work, which either does not model address translation for the kernel [3, 40, 42, 49, 50] and would
thus reason unsoundly about this code, or models address translation but lacks features required
to reason about this code [51, 52]. We describe our proof of correctness for this code, based on the
first formalization of critical VMM kernel invariants in an MMU-aware logic, in Section 5.

Virtual memory affects the OS scheduler, which deals with multiple address spaces, so must track
which virtual addresses are valid in which address spaces. Some virtual addresses are valid in only

4Not to be confused with Virtual Machine Monitor. We focus on non-hypervisor scenarios, but hardware virtualization
extensions for both x86-64 and ARM make use of an additional set of page tables translating what a guest considers to be its
(virtualized) physical memory to actual physical memory. Our contributions should offer value in this scenario as well.
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a single address space (e.g., a code address for a particular usermode process), while others are valid
in all address spaces (e.g., kernel data structure pointers). The VMM must maintain some of these
assumptions on behalf of the rest of the kernel, for example by guaranteeing that a certain range
of virtual addresses (corresponding to the kernel’s code and data) are valid in every address space.

Out of Scope: Translation Lookaside Buffers (ILBs). CPUs with MMUs typically have an additional
translation lookaside buffer (TLB), to cache the (successful) results of page table walks, rather than
transforming every virtual memory access into 5 physical accesses. Any time a virtual address that
was accessible becomes inaccessible (or has downgraded permissions), the TLB (or at least entries
in affected virtual address ranges) should be flushed. In most kernels, this occurs in only a few
well-known places, which is why existing verified kernels seL4 [49, 50] and CERTIKOS [40, 41]
currently trust that TLB flushes are handled correctly rather than actually modeling TLB hardware
and verifying. Eventual verification of TLB handling is a worthwhile long-term goal, but it is a
challenging pursuit in its own right. Based on others’ early progress on verifying TLB operations
in isolation [70], we expect it to be possible to combine this paper’s insights with that support.
Section 6 elaborates briefly on the challenges involved. Even without TLB modeling, our logic
already enables verification of virtual memory management functionality that prior verified kernel
work either trusts completely (seL4, CERTIKOS) or is incapable of reasoning about.

2.2 Separation Logic

Separation logic [66] is a descendant of classic Hoare logic [44], where in addition to pre- and
postcondition assertions, assertions themselves pick up a separating conjunction operator *, such
that an assertion A = B means A and B are true of disjoint pieces of state. This allows for local
reasoning about updates, because it articulates that updates to the state backing A do not affect
the truth of B. This is classically demonstrated through the points-to assertion: I +— v asserts that
the memory cell at address [ holds value v: knowing x + 3 * y + 4 and writing through x means
information about y is preserved: {x > 3 % P} x := 5 {x > 5 * P} can be derived for any P.

We build on the Iris [48] separation logic framework, an abstract separation logic embedded
in Rocq, which is useful for both metatheoretical work and interactive correctness proofs using
the logic. Given an operational semantics structured a certain way (in our case, semantics for a
fragment of x86-64 assembly including address translation), if a small number of “glue” lemmas are
proven, Ir1s provides a ready-made separation logic with a number of advanced features, including
higher-order ghost state and impredicative invariants, for no additional work.

We suppress some technical Ir1s details for brevity, but briefly note a few recurring details used
heavily in Ir1s but not necessarily in traditional separation logics. Because Ir1s is an embedded frame-
work in RocQ, proofs in Iris-derived logics often encapsulate raw Rocq assertions: " P~ is an embed-
ding of the Rocq assertion P into an Ir1s assertion (used for things like equality and other general
pure logical assertions), similar to prior RocQ-embedded program logics [19]. Newly-defined Iris as-
sertions are in fact RocqQ terms of a particular type, rather than being drawn from a fixed vocabulary.

Ir1s includes two forms of implication. The magic wand operator - is an affine implication:
A - B describes a resource which, if combined with a resource satisfying A, will satisfy B. Notably,
this implication involves no changes to ghost state. Ir1s, building on the Views framework [33],
also includes a view shift operator = which models updates to ghost state: A = B means resources
satisfying A may be transformed into resources satisfying B, intuitively by updating only ghost
state (a slight simplification of Ir1s’s update modalities, but adequate intuition for non-Ir1s-experts).
View shifts are essentially logical entailment plus ghost updates.
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An important limitation is that to date, every separation logic has assumed that all pointer
addresses are meant for use in a single address space, which avoided the problem of tracking that
certain points-to assertions are true only for certain address spaces, but not others.

2.3 Modal Logic

The problem of needing to keep track of things being true in some contexts and not in others is
hardly unique to virtual memory management, and is the general insight behind most flavors of
modal logic, which use unary operators to express that a logical claim P is contingently true in
certain other circumstances, such as in other times [64] or places [39, 60].

Of particular interest for reasoning about virtual memory are modalities that permit naming
the alternate circumstances, prominently hybrid modal logics [7, 12], which come equipped with
assertions of the form [£](P) indicating that P is true in the specific alternate circumstance (Kripke
world) named by the term ¢. Note that a distinctive property of hybrid logics is that, rather than
hiding the points at which a modal assertion is evaluated inside the modality’s definition, the choice
of what world a modalized assertion should be true in is chosen in the assertion itself. This allows
assertions to talk about not simply whether some other assertion is true in some possible future or
past world related in a fixed way to the current world, but to talk about arbitrary other worlds. This
is somewhat different from the accessibility relation modalities more common in verification, but
also well-established, tracing its origin back to Arthur Prior [8], just as many temporal logics do.

This explicit naming of alternate worlds increases the power of propositional modal logics [12],
and is necessary for completeness in classical separation logics [15]. However typically modal
logics can always be “compiled” into logics with suitable quantifiers: the standard translation [13]
of propositional modal logics into first-order logic has been thoroughly studied. Ir1s’s support for
higher-order impredicative quantification means this applies to our modalities as well — they do
not strictly speaking make IR1s more expressive. But while propositional modal logics are no more
expressive than first-order logic (with just two variables!), the primary goal of a modal logic is
not raw expressive power but intuitive specifications and proof rules. Temporal logics are used
because they simplify specifications (vs. having explicit time variables in every base asertion) and
reasoning principles (because the modal correspondents of quantification over time is used in a
highly structured way). Our logic offers a similar value proposition: natural specifications and
reasoning principles which are powerful enough for reasoning about virtual memory management,
but without requiring pervasive tracking of and explicit abstraction over address spaces.

For our purposes, these are natural candidates to adapt for virtual memory management. We
can reinterpret the notion of naming an alternate world slightly more loosely, and instead name
address spaces by the physical address of the page table root, since these structures are the physical
representations of page tables. Thus in this paper we develop the notion that we can represent
contingent truth of an assertion via [r](P) indicating that P holds in the address space rooted
at physical address r. Because OS kernels create and destroy address spaces, it is sensible to use
a hybrid-style logic that is not specialized to a fixed set of modalities, but this introduces some
subtleties from the fact that the existence of certain modalities (address spaces) can change.

Interaction of hybrid modalities and substructural reasoning is relatively unexplored (see Section
6). Our development atop Iris [48] needs to explore some additional subtleties that arise where the
modality itself may entail ownership of resources, as well as interactions between our hybrid-style
modality and substructural rules. Some prior Iris-based work [27, 28] has constructed derived
modalities in the style we propose, indexed by thread IDs. However their intepretation of those
modalities was fully fixed ahead of time (to refer to essentially buffers in operationalized versions
of C11 concurrency). In this setting, while our modalities will be indexed by page table roots, it is
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possible to modify the address translation for an address space with root r — thus changing the inter-
pretation of a modality, and even whether a modality is valid — while assertions with that modality are
active. This is essential to updating page mappings for the current address space in use by a CPU.

3 Machine State and Semantics

To develop our core logical ideas, we instantiate Ir1s with a simple language for streams of instruc-
tions and a logical machine model corresponding to execution of x86-64 assembly instructions with
virtual memory enabled on the CPU. A register identifier, r, is chosen from a fixed finite set of regis-
ter identifiers, greg.’ We use these identifiers r for register names such as rax, r8, or cr3. Our model
includes all x86-64 integer registers (including stack and instruction pointers), as well as cr3 (for
page table roots) and (for flags set by comparison operations and inspected by conditional
jumps). For clarity and ease of representation, we use machine words, w,, € ‘W, with the subscripts
showing the number of bits in a word, for memory addresses, values, and offsets, rather than distinct
location types that wrap machine words. For example, w; is a 12-bit word, which can be obtained
for example truncating away 52 bits of a 64-bit word (we4). We represent the machine state mainly
as a finite map of registers to register values and a map of word-aligned physical memory addresses
to 64-bit physical memory values. Thus our states ¢ include register maps o.R : greg —4, regval
and memory maps o.M : Wsy —an (Wi2 —fn Wssa) which segment memory into page-sized
increments. Of particular note, cr3, the page table register, is included in the machine state.
Programs in our logic are instruction sequences i, which are formed by either a basic instruction
skip, or prefixing an existing instruction sequence with an additional instruction (i; 7). We model
(and later, give program logic rules for) instructions for register loads and stores, and reading and
writing memory. The latter require page table walks. The most important instructions that we
model are memory-accessing variants of the x86-64 mov instruction, which we format in Intel syntax
(destination on the left, source on the right). Thus, a store to memory is mov [ry,] 1, and a load from
memory is mov r, [ry,]. Operationally, each first translates the virtual address stored in the register
'm to a physical address (a page table walk), then either updates the memory at that physical location
with the contents of r, (for store) or updates r, with the contents of that memory (for load). Our for-
malization includes additional mov variants (e.g., accessing memory at constant offsets from the base
register, or moves between registers), basic integer and bitwise operations (add, and, bit shifts, etc.)
with their effects on , jumps and some (not all) conditional jumps, call, ret, push, and pop.

4 Program Logic for Location Virtualization

A program logic for reasoning about code which may work with (and possibly update) multiple
address spaces requires dealing with several key challenges. It must ensure that reasoning about
memory accesses only depends on assertions that hold in the active address space at the time of
access. It must allow invariants for code or data structures to refer to other address spaces. These
constraints mean it must also support reasoning about when the active address space changes, as
this affects which memory assumptions are usable or not for memory access and thus which data
structures are immediately directly accessible. Many approaches could handle these problems in
principle, such as tagging pointers with the relevant address space. But such approaches introduce
other complexities. Most code, even in an operating system kernel, only works with a single address
space (the current one). Explicitly plumbing address space information through a simple linked list
specification, simply because some other part of the program may manipulate other address spaces,
adds significant specification burden. Specifications which need to talk about a particular invariant

5t abbreviates general register, which includes integer registers (e.g., rax), control registers (e.g., cr3), and segmentation
registers (which we do not discuss in detail, but are still used in a limited way in 64-bit mode on modern x86-64 processors).
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holding in a specific other address space (or multiple other address spaces) would need to quantify
over functions from address space identity to assertions rather than just assertions.

Using a modal approach resolves all of these challenges cleanly and uniformly. Specifications that
are not about address space manipulation need not mention address spaces in assertions. One can
use standard separation logic data structure specifications without restructuring or adding explicit
address space tracking, but every assertion can be still stated for either the current or specific other
address spaces as needed. In short, modalities make it possible for specifications to mention address
spaces when it is important to the code, and not when it is unimportant to the code.

We describe a program logic (a separation logic) along the lines suggested above, where every
assertion is relative to an address space in which it is interpreted, allowing us to define virtual
points-to assertions that make claims about memory locations in a particular address space. Virtual
addresses, and even virtual points-to assertions, are not tagged with their address spaces in any
way. Memory access in this logic is validated through the use of virtual points-to assertions in
preconditions, which guarantee that address translations succeed. This supports rules for updat-
ing not only typical data in memory that happens to be subject to address translation, but also
manipulation of the page tables themselves via virtual addresses (as demanded by all modern
hardware) and via virtual points-to assertions. To support specifications that deal with multiple
address spaces, our logic incorporates a hybrid-style modality [7](P) to state that an assertion is
true in another (assertion-specified) address space rather than the address space currently active
in hardware, which is not only useful for virtual memory manager invariants, but also critical to
reasoning about change of address space. By developing this within the Ir1s framework, we obtain
additional features (e.g., fractional permissions) that allow us to verify some of the most subtle and
technically challenging instruction sequences in an OS kernel (Section 5).

To support making assertions depend on a choice of address space, we work entirely in a pointwise
lifting of Ir1s’s base Bl logic, essentially working with separation logic assertions indexed by a choice
of page table root as a ‘We4, which we call vProp >:%Definition vProp = : bi := word 64 —b> iPropI .
This is the (RocQ) type of assertions in our logic. Most constructs in Ir1S’s base logic are defined
with respect to any Bl-algebra (of Rocq type bi), so they automatically carry over to our derived
logic. However, we must still build up from existing Ir1is primitives to provide new primitives that
depend on the address space — primarily the notion of virtual points-to. To define and use virtual
points-to assertions, we require two basic assertions that ignore the current address space:

Register points-to. The assertion r +, {gq} rv ensures the ownership of the register r containing
the value of the register rv. The fraction q with value 1 asserts the unique ownership of the register
mapping and grants update permission to it; otherwise, any value 0 < q < 1 represents partial
ownership, granting read-only permission on the mapping.’

Physical memory points-to. The soundness proofs for our logic’s rules largely center around
proving that page-table-walk accesses as in Figure 1 succeed, which requires assertions dealing
with physical memory locations. We have two notions of physical points-to facts. The primitive
notion closest to our machine model is captured by an assertion pfn ~ pageoff —, {q} v, where
pfn (a ‘W5, page frame number) essentially selects a 4KB page of physical memory, and pageoff (a
“Wi2) is an offset within that page. From this we can derive a more concise physical points-to when

the split is unimportant: w —, {g} v = (drop 12w) ~ (bottom 12 w) —, {q} v

®Iris experts may notice our -b> resembles another pointwise lifting already in Irts [27, 28]. This similarity is real, but the
existing lifting does not appear to work with indexed RocQ types like our word n as a domain.

"We adopt the standard naming convention of q-related names representing fractional permission, with fractions sometimes
appearing in braces or as subscripts in various asertions.
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Definition va ¢ {q} v:vProp X :=
Tlge 13¢ 12¢ 11e- ~ @ligned va™x L4_L1_PointsTo(va 14e 13e 12e 11e paddr) * paddr —, {q}v.
Definition L4_L1_PointsTo (maddr 14e 13e 12e 11e paddr :word 64) : vProp X := A cr3val.
T entry_present 14e A entry_present 13e A entry_present 12e A entry_present 11e™ =
(14M52 maddr cr3val) ~ (14off maddr cr3val) —, {q1} 14e =
(13M52 maddr 14e) ~ (13off maddr 14e) +—, {q2} 13e =
(12M52 maddr 13e) ~ (12off maddr 13e) —, {g3} 12e *
(11M52 maddr 12e) ~ (L1off maddr 12e) —, {q4} 11e * " addr_L1(va,l1e) = paddr .

0 N N U R W N =

Fig. 3. A Strong Virtual Points-to Relation

4.1 An Overly-Restrictive Definition for Virtual Memory Addressing

A natural definition for a virtual points-to asserting that virtual address va points to a value v would
contain partial ownership of the physical memory involved in the page table walk that would
translate va to its backing physical location — with locations existentially quantified since a virtual
points-to should not assert which locations are accessed in a page table walk, as in Figure 3. It asserts
the existence of four page-table entries, one at each translation level, and via L4_L1_PointsTo as-
serts that the physical page table walk (per Figure 1) succeeds in reaching the L1 entry, which points
to the page holding the physical memory backing the virtual address, which contains value v. Most
of the definition lives directly in vProp, using the separation logic structure lifted from Ir1s’s iProp.

L4_L1_PointsTo works by chaining together the entries for each level, using the sequence of
table offsets from the address being translated to index each table level, and using the physical page
address embedded in each entry.® For example, the first-level address translation to get the L4 entry
(14e) uses the masks [4M52 with the current cr3 to get the physical address of the start of the L4
table and l4off with the virtual address being translated to compute the correct byte offset within
that table just as in the first translation step of Figure 1. Thus Line 5 asserts that the physical address
built from the table base and offset points to the L4 entry l4e. Subsequent levels of the page table walk
assertion (Lines 6—8) work similarly. The statement of these assertions is simplified by the use of our
split physical points-to assertions, since each level of tables is page-sized. !° This helper definition
is also more explicit in vProp which binds a value to cr3 and uses it to start the translation process.

This solution is in fact very close to that of Kolanski and Klein [51], who define a separation logic
from scratch in IsaBELLE/HOL, where the semantics of all assertions are functions from pairs of heaps
and page table root values to booleans.!! Our solution in the next subsection improves on theirs, re-
moving some restrictions in this definition by further abstracting the handling of address translation.

4.2 Aliasing/Sharing Physical Pages

The virtual points-to definition shown in Figure 3 is too strong to specify some operations that a
virtual memory manager may need to do, such as move one level of the page table to a different
physical location while preserving all virtual-to-physical mappings. The use of Ls_L;_PointsTo
in Figure 3’s virtual points-to definition stores knowledge of the page table walk details with
ownership of the backing physical memory. Updating any of these mappings (e.g., moving the page
tables in physical memory, as in coalescing for superpages or hugepages) would require explicitly
collecting all virtual points-to facts that traverse affected entries. It is preferable to permit the page

8The fractions q1 through q4 represent the fractional ownership of each entry based on how many word-aligned addresses
might need to share the entry — (5% )™ for each level n.

Note the offsets mentioned in Figure 1 are 9-bit indexes into the 512 entries; the byte offset is that times 8.

1%We do not address superpages and hugepages in this paper.

11This was a typical explicit construction at the time; their work significantly predates Irrs.
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A
va iy {q} val : vProp = = Jpa. 36. (Acr3val. Je. cr3val ‘—>?S 8)* va ‘—>g pa *pa>p {q} val
Find addr. space invariant Ghost translation ~ Physical location

Fig. 4. Virtual-Points-to for Sharing Pages

GHOSTMAPUPDATE
GhostMap(y, 0) * pa <Y va = GhostMap(y, 0[va > pa’]) = va < pa’

GHOSTMAPLOOKUP

GhostMap(y, 6) = va <Y pa - "0(va) = Some(pa)”
Fig. 5. Iris rules for ghost maps
IASpace(6,m) 2 ASpace_Lookup(6,m) = 3k 3 (l4e 13e I12e, I1e, pa). Ly_L;_PointsTo(va, lde, I3e, 12¢, I1e, pa)

(va,pa) €@
where ASpace_Lookup (6, m) £ Xcr3val. 35 .7m !l cr3val = Some 87 « AbsPTableWalk (4, 0)

Fig. 6. Per-address-space invariant with a fixed global map of address space names m

tables themselves to be updated independently of the virtual points-to assertions, so long as those
updates preserve the same virtual-to-physical translations. But this is not possible with Figure 3’s
definition, which ties ownership of particular pieces of page table memory to the virtual points-to.

We separate the physical page-table walk from the virtual points-to relation, replacing it with
a ghost state that merely guarantees that the address translation would succeed. Ir1s includes a
ghost map construction, which we use to track mappings from virtual addresses to the physical
addresses they translate to as a piece of ghost state. The map includes, for each key in the map (i.e.,
each virtual address), a token k <Y v whose ownership is required to update that key-value pair
in the ghost map named y. The existence of such a token implies that the actual map 0 tracked by a
corresponding GhostMap(y, 0) resource indeed maps k to v. These properties are captured by key
Ir1s rules in Figure 5.2 There are other rules, but these two are most important for explaining ghost
maps. GHOSTMAPUPDATE says that ownership of the actual ghost map with ghost name y and map
contents 0, and a token witnessing that 6 maps pa to va permits an update to the ghost map’s state,
changing the map and replacing the token to represent the new value. GHosTMAPLooKUP allows
using the same information to simply conclude that the mapping indicated by the token is true.

The virtual memory manager’s invariant ensures that for each va <Y pa mapping in this map,
there are physical resources sufficient to ensure that the address translation for va will resolve on
the hardware to pa — via Ly_L;_PointsTo. This kernel invariant turns out to be a key ingredient
in supporting proofs of VMM functionality: in Section 5 we will see that separating the logical and
physical virtual-to-physical mappings is what allows stating the global kernel invariants needed
for software page traversals, which prior work did not (and could not) pursue.

For clarity, we refer to the specific ghost map summarizing virtual-to-physical translations by
AbsPTableWalk(d, 6) = GhostMap (4, ) (omitting § for brevity when only one is in scope) and
keep this in a per-address-space invariant described shortly. We then replace the physical traversal
Ls_L;_PointsTo in Figure 3’s virtual points-to definition with ownership of the token va < pa,
yielding Figure 4’s definition. This new definition guarantees that the ghost map 0 maps the virtual
address (va) to a physical address (pa), and thus that the per-address-space invariant described
next will contain the physical resources that guarantee that the hardware resolves the translation.

We place the authorative ownership of the ghost map translation APTableWalk in a per-address-
space invariant IASpace (Figure 6), allowing changes to the page tables that preserve overall virtual-
to-physical translations in isolation, and also allowing changes to specific the virtual-to-physical
translations when combined with the token stored in the relevant virtual points-to (Figure 4).

121r1s ghost maps lack established notation; the syntax we use captures the details of iris.base_logic.lib.ghost_map.
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[r](P) :vProp X 2 A, Pr Fact P 2 V,rr’.Pr4-Pr Fact [r](P) Fact (r —, {q} rv)

Fact (w —=p {q} v) (PrQ)+ ([r](P) + [r1(Q)) [r1(P+Q) 4k ([r](P) = [r](Q)

[r1(P A Q) 4 [r](P) A [r](Q) [r1(PV Q) 4 [r](P) v [r](Q) Fact P+ [r](P) 4 (P)
Fig. 7. Other-space Modality and Its Laws

We must also ensure that different address spaces can have independent ghost maps — which
we resolve with an additional unique global ghost map (with ghost name Js) from address-space
identifiers (page table roots whose values are manipulated by the kernel code) to the Ir1s ghost
name for that address space’s ghost map. In Figure 4, the extra ghost map token for Js asserts that §
— which is exisentially quantified — is the correct ghost name for the current address space. That is
then the ghost map named in the ghost virtual-to-physical translation token of Figure 4. Just as the
ghost name ¢ names the ghost map with contents 8, §s names a ghost map, whose contents appear
as m in Figure 6 (the association of ds to m is a global invariant not shown). IASpace(6, m) then
performs 3 roles: it associates the current address space’s root with an appropriate Iris ghost name
§; it tracks authoritatively that &’s logical contents match 0; and it stores the physical resources for
the current address space mappings (via the iterated L4_L;_PointsTo).

4.3 Address Space Management

Real VMMs must handle more than one address space. Doing so requires a way to talk about other
address spaces, and means to switch address spaces. Figure 7 gives the definition of our modal
operator for asserting the truth of a modal (address-space-contingent) assertion in another address
space, which we call the other-space modality. The definition itself is not particularly surprising
— as our modal assertions are semantically predicates on a page table root (physical) address,
the assertion [r](P) is a modal assertion that ignores the (implicit) current page table root, and
evaluates the truth of P as if r were the page table root. The novelty here is not in the details of the
definition, but in recognizing that this is the right way to deal with multiple address spaces, and
working out how to support interaction of multiple address spaces (discussed in the next section).
The modal assertions, together with the other-space modality, mean we can give generic definitions
of data structure assertions (e.g., linked lists, etc.) which do not need to track information about
their own address space. In fact, only assertions that explicitly deal with multiple address spaces
need to mention address spaces at all (via the other-space modality).

We can prove that this modality follows certain basic laws, showing that its truth is independent
of the address space in which it is considered, that it distributes over various logical connectives,
and that it follows the rule of consequence. We call vProp assertions whose truth is independent of
the current address space Facts; these include other-space assertions, physical memory points-tos,
and register assertions. Facts can freely move in and out of other address space modalities.

In general, per-address-space invariants should be collected in a larger VMM invariant, with
individual address spaces’ invariants pulled out as needed, such as when proving soundness of an
individual virtual memory access. However, such larger invariants would contain many kernel-
specific properties that are orthogonal to the fundamental reasoning principles that are the focus
of this paper. We leave such kernel-specific reasoning to future work, but our verification of task
switching (Section 5) demonstrates support for managing multiple address spaces.

4.4 Selected Logical Rules

As common for assembly-level verification [62, 63], we define our logic using Hoare doubles:
{®}y € : iProp 2 == ((cr3 >, rtv * @) rtv) -+ WP e {_, True}
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WRITETOREGFROMVIRTMEM
P « IASpace = rip >, iv+ Movlen(rg, [rq])* s
rd Py Vxrg >y {q} vaddrxvaddr >y {q}v |

{P « IASpace # rip =, iv#rg >, rvd xrs >, {q} vaddr * vaddr >y v}, movrg, [re]; is

WRITETOVIRTMEMFROMREG -
{P = IASpace * rip > iv+ Movlen(rg, [rg]) *rs =, {q1} rvsxrq >, {q2} vaddr = vaddr >y v}y is

{P « IASpace  rip />, ivxrs >, {q1} 1vs * rq =, {g2} vaddr = vaddr >, rvs}y mov [rg], rs; is

WRITETOREGCTLFROMREGMODAL .
{[rtv] (P % IASpace) * rip >, iv + 4 5 IASpace * R * rs >, {q} rvs}yys is

{P « IASpace # rip >, iv * [rvs] (R * IASpace) * rs >, {q} rvs};y mov cr3, rs; is

Fig. 8. Proof rules for selected AMD64 instructions

Our Hoare doubles {®}, e state that the expression (i.e., sequence of instructions) e are safe to exe-
cute (will not fault) when executed with vProp precondition ®xcr3 +, rtv. WP is Ir1s’s own weakest
precondition modality, unmodified [48]. Making rtv a parameter to the double (vs. a simple register
assertion) makes it possible to ensure ownership of the cr3 register and its value is accounted for
while avoiding some technical headaches with trying to enforce that ® itself contains that.

The rest of this section describes specifications of three key AMD64 instructions in our logic.
These rules and others (e.g., including accessing memory at an instruction-specified offset from
a register value, which is common in most ISAs) can be found in our artifact. In general, we use
metavariables rg and ry to specify source and destination registers for each instruction, and prefix
various register value variables with rv. We sometimes use r, to emphasize when a register is
expected to hold an address used for memory access, though the figure also uses typical assembler
conventions of specifying memory access operands by bracketing the register holding the memory
address. Standard for Hoare doubles, there is a frame resource P in each rule for passing resources
not used by the first instruction in sequence through to subsequent instructions. Our rules include
tracking of each instruction’s memory address to track updates, which is critical for control
transfer instructions. Our development also includes handling of the register updates from
arithmetic instructions. Most rules are otherwise standard (e.g., mov between registers, etc.), with
Figure 8 showing the rules most unique to our development. As a reminder, in systems of Hoare
doubles, an instruction’s precondition appears in the conclusion of the rule, and an instruction’s
“postcondition” appears as the precondition to subsequent instructions in the antecedent of the rule.

4.4.1  Accessing Virtual Addresses. Figure 8 includes two rules for accessing memory at an ad-
dress stored in a register r,. Setting aside P, IASpace, and the instruction pointer , WRITE-
ToREGFROMVIRTMEM and WRITETOVIRTMEMFROMREG are nearly-standard (assembly) separation
logic rules for memory accesses [19, 63]. For example, WRITETOREGFROMVIRTMEM’s specification
reflects that it reads from the (virtual) memory address vaddr stored in the address register r, — and
thus requires register points-to and virtual points-to assertions describing that relationship and the
assumed value v in memory in its precondition (the precondition of the rule’s conclusion). It reflects
the load (mov) of that memory value into the destination register ry, with the updated register
points-to in the precondition for is. P describes framed resources, which are passed along to the pre-
condition of subsequent instructions, as in any system of Hoare doubles [19, 63]. WRITETOVIRTMEM-
FrROMREG is analogous for writing to memory. There are only two changes specific to our approach.

First, because we split the physical resources for the page table walk from the virtual points-to
itself (per the discussion of Section 4.2), the rule requires IASpace for the current address space
to be carried through. The soundness proofs for these rules extract the token (va ‘—>g pa) from the
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virtual points-to, use that to extract the physical page-table-traversal points-to collection describing
the page table walk for the relevant address (L4_L;_PointsTo) from the invariant (IASpace), prove
that the page table walk succeeds and that memory or registers are updated appropriately, before
re-packing the invariant and virtual points-to resources.

Second, the memory access rules — as with all rules in our logic — increment the instruction
pointer by the length of the encoded instruction. MovLen returns how long the instruction en-
coding for the corresponding mov is; x86-64 instruction encodings are often longer for instructions
using registers that are absent from the 32-bit x86 ISA that preceded x86-64.

Note that the use of a modal abstraction of address space simplifies these rules. The antecedents
of WRITETOREGFROMVIRTMEM and WRITETOVIRTMEMFROMREG only mention the address space
in the index of the Hoare double — not in P, or the (virtual) points-to assertions. There is no extra
condition to discharge that the address being accessed is from the current address space.

4.4.2 Updating cr3. Unlike other rules, WRITETOREGCTLFROMREGMODAL updates the root address
of the address space determining the validity of resources, from rtv before the mov to rvs afterwards.
The global effects of this rule are reflected in moving assertions for the current address space (P and
IASpace) under an other-space modality for the initial (outgoing) address space rtv, and moving the
new address space’s assertions out of the corresponding modality (since after the mov, those will
hold in the new current address space). The global aspect is important. A naive frame rule would be
unsound for cr3 updates: one could frame out assertions in one address space, switch address spaces,
and bring those assertions from the old address space back into the new address space, where they
may not hold. It is often said that the frame rule (below) is one of the key pieces of separation logic.

{P} C{0Q} .

{P*R} C{Q=R}

RAME (unsound with address space changes)

Such a rule is normally recoverable from Hoare doubles (see, e.g., Chlipala [18, 19]). However, in
the presence of address space changes, the traditional frame rule is unsound. Consider:

{Pre}mov %cr3, r{Post}

{a > x = Pre}mov %cr3, r{a > x * Post}
In this (broken!) hypothetical example, both the precondition and the postcondition assert that
a —, x in the current address space, but the new address space may map a to another value. So,
this derivation clearly leads to an unsound conclusion. The essential problem is that the frame
rule is motivated by local reasoning about local updates, but a switch of address space is a global
change that may invalidate information about virtual addresses. Thus, framing around arbitrary
cr3 updates is unsound — hence the global nature of WRITETOREGCTLFROMREGMODAL — though
a variant the ensures the same cr3 value is installed before and after the framing can be recovered.

FrRAME

4.5 Soundness

Our rules from Figure 8 are proven to be sound in Ir1s against an assembly-level hardware model im-
plementing a fragment of x86-64, including 64-bit address translation with 4-level page tables. Our
rules for control transfers (jne, call, and ret) are currently axiomatized (with completely standard
specifications [19, 63])'* because Ir1s’s built-in machinery does not provide convenient ways to dis-
card the current continuation; adaptation of others’ approaches [29] is future work. Our soundness
proofs for all other instructions (including, critically, all memory accesses) are axiom-free.

13 An assertion that code at some address is safe to call with a given precondition [62] asserts that the address is mapped
and that memory at that address decodes to an instruction sequence that is safe with that precondition.
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1 {P=IASpace(0,Z, m) * [rtv’ | (IASpace(0’,Z',m’) = Pother) * rsi >, restore * rdi >, save * rbx >, rbxv}y
2 {rspo, rspvErbp o, rbpv s r12 -, r12v=r13 -, r13vsrid o, r1dv s ri15 -, r15v}y
3 {ContextAt(save,_) * ContextAt(restore, [rbxv’,...,rtv']) } v
4 mov O[rdi], ... ;; also save rsp, rbp, r12, r13, r14, to offsets 8, 16, ... and 40 from rdi
5 . mov 48[ 1,
6 {P=xIASpace(6,Z, m) = [rtv']| (IASpace(0’,Z',m’) = Pother) = rsi >, restore % rdi +>, save * rbx >, rbxv}uy
7  {rsps, rspvsrbp o rbpy  r12 5, r12vsri3 >, r13vsr1d . r14v = r15 -, r15vigy
8  {ContextAt(save, [rbxv,...,rtv]) * ContextAt(restore, [rbxV’,...,rtv']) }ity
9 mov 56[%rdil, %cr3 {...xrdi+56 > rtv ...}y
10 mov , O[rsi]
11  mov , 8[rsi] ;; Switch to new stack, which may not be mapped in the current address space!
12 ;3 load rbp, r12, ri13, ri14, from offsets 16, 24, 32, and 40 from rsi
13 mov , 48[rsi]
14 {P = IASpace(6,Z,m) * [rtv’ ] (IASpace(0’,Z,m’) = Pother) * rsi r>, restore = rdi >, save * rbx >, rbxv’}
15 {rsp =, rspv’ = rbp =, rbpv’ xr12 >, r12v/ «r13 >, r13v/ «r14 >, r14v’ = r15 5, r15v/ by
16  {ContextAt(sauve, [rbxv,...,rtv]) = ContextAt(restore, [rbxv’,...,rtv']) }rtv
17 mov cr3, 56[rsi] ;; <-- Switch to the new address space
18  {[rtv](P % IASpace (0, E, m) = ContextAt(save, [rbxv, ..., rtv]) = ContextAt(restore, [rbxv’,...,rtv'])) }1ty
19  {IASpace(@’,=',m’) = Pother = rsi -, restore * rdi >, save * ...} v

Fig. 9. Basic task switch code that switches address spaces.

5 Experiments

In this section, we verify several critical and challenging pieces of VMM code. First, we formally
verify a switch into a new address space as part of a task switch, the first such verification handling
both old and new processes’ assertions (in different address spaces) at the time of the switch. Then,
in several stages, we work up to mapping a new page in the current address space, addressing
significantly more of this process than prior work that included address translation in its hardware
model. This requires a number of independently challenging substeps: dynamically traversing a
page table to find the appropriate L1 entry to update; inserting additional levels of the page table if
necessary (updating the VMM invariants along the way); converting the physical addresses found
in intermediate entries into the corresponding virtual addresses that can be used for memory access;
installing the new mapping; and collecting sufficient resources to form a virtual points-to assertion.
Of these, only the second-to-last step (installing the correct mapping into the current address space)
has previously been formally verified with respect to a machine model with address translation.

5.1 Change of Address Space

A critical piece of trusted code in current verified OS kernels is the assembly code to change the
current address space; current verified OS kernels currently lack effective ways to specify and
reason about this low-level operation, for reasons outlined in Section 6.

Figure 9 gives simplified code for a basic task switch, the heart of an OS scheduler implementation.
This is code that saves the context (registers and stack) of the running thread, and resumes execu-
tion of a previously-suspended thread of execution. In C this code would be given the signature
void swtch(context_t* save, context_t* restore). Saving the context is a straightforward
matter of storing each register into the save context. Restoring the restore context is the tricky bit,
because both the stack pointer and address space must be restored. Confusingly, a single dynamic
execution of this function begins execution in one thread, and returns in another thread — because
the execution switches stacks, and thus returns on the second thread’s stack.Hence this is used, for
example, when the scheduler has chosen a new thread to execute for a voluntary (non-preempted)
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context switch, and will call the code with save pointing to a reserved storage space for the cur-
rent thread, and restore pointing to the context of the next thread to execute. We will ignore
non-integer registers; others are handled similarly. In Figure 9, Lines 4-9 store the callee-save
registers (per the System V AMD64 ABI calling conventions) of the calling thread into the context
data structure pointed to by (at virtual address save). This is justified by the ContextAt(save, _)
assertion in the precondition (Line 3), which expands into a full set of full-permission (thus writable)
virtual points-to assertions for various offsets from save, one for each saved register. Verification
up through line 9 is straightforward application of WRITEToVIRTMEMFROMREG (Figure 8).

The code to restore the previously-saved context located at restore (accessed via rsi) in Lines
10-17 is where the proof becomes subtle, though our logic makes the construction of the proof
feel similar to typical assembly-level verification because most instructions are verified with rules
that work very similarly to standard proof rules while being proven sound against a machine
model with address translation. Similar to the precondition for the save context, the restore context
has a corresponding ContextAt(restore, [...]) assertion expanding to virtual points-to assertions
— in the caller’s adddress space. The mov instructions prior to Line 17 are each verified with a
fixed-register-offset variant of WRITETOREGFROMVIRTMEM, but Line 11’s implications are subtle
because it switches stacks by updating rsp. Because the new stack pointer may only be valid in the
address space of the restored context, stack accesses at this point are unsafe. Prior to Line 17, we can
see in code and invariants that the local registers are updated to match the values populating the
restore context, except for the page table root. Line 17 itself is verified with a rule similar to WRITE-
ToREGCTLFROMREGMoODAL (but obviously reading from a fixed offset of a register, as needed in Line
17). This rule also globally moves assertions into and out-of other-space assertions, to reflect that
assertions holding in the outgoing address space rtv generally will not hold in the incoming address
space rtv’ and vice versa. Thus the precondition has assertions for the new thread under an other-
space modality for the new address space, and the postcondition has assertions for the old thread
under an other-space modality for the old address space.Both ContextAt assertions end up under the
old other-space modality, but in a real kernel would transfer out based on kernel-specific invariants.

The specification above does not directly discuss the relationship between instruction pointers
and registers — and does not need to because P and POther can be instantiated to capture that
relationship with additional information about stack contents. This code is meant to be called with
a return address for the current thread stored on the current stack, and a return address for the
target thread on the target thread’s stack. For a given call site, P would be instantiated to require
that the initial stack pointer (before is updated) has a return address expecting the then-current
callee-save register values in the current (initial) address space to (together with other resources
used to instantiate P) imply the precondition of the code at that return address. The situation for
the target thread is similar, but using POther, and using the other-space modality because the other
thread’s stack, code, and other relevant assertions may only be valid in the new address space.
Our logic’s rules for updating the page table root, and thus moving assertions into and out of
other-space modalities, neatly manage which assertions are currently valid, without the need to
explicitly plumb address space labels through every assertion in the larger proof.

Although prior work has verified context switches within a single address space [63], and address
space switches without any code before or after [70] (that is, not reasoning about the impact of
address space change on what data were accessible), this is the first verification that handles both.

5.2 Traversing Live Page Tables

We build up to the main task of mapping a new page after traversing the page tables in the software.
This algorithm is complex and corresponds to a significant amount of assembly code. To assist
with readability, we present C code for this process, with assertions adjusted slightly to refer to C
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program variables rather than registers. The actual verification was carried out on x86-64 assembly
generated from this source code. Listings of the assembly fragments with inline assertions appear in
our technical report [54]. Whether in C or assembly, the page table traversal involved in mapping
a new page is very challenging functionality to verify. Loading the current table root from cr3
is straightforward (a mov instruction). However, this produces the physical address stored in cr3,
not a virtual address the kernel code can use to access that memory. This problem repeats at each
level of the page table: assuming that the code has somehow read the appropriate L4 (or L3, or
L2) entry, those entries again yield physical addresses, not virtual. The only prior work to verify
page mapping ignored the traversal and only verified mapping assuming code already had an
appropriate virtual address for the L1 entry, where a physical address could simply be stored. Our
proof is the first to additionally deal with the critical code leading up to that point.

Code Overview. As described in Section 2, mapping a new page consists of simulating the hardware
address translation of Figure 1, but in software. The code for this task takes three explicit parameters:
the root pointer (read from cr3 by earlier code), the page-aligned virtual address (va) at which
to make a new piece of memory accessible, and the physical address (fpaddr) of the memory
to map in that location. The function we ultimately verify, vaspace_mappage (Figure 15), relies
primarily on a helper function already shown in Figure 2. walkpgdir finds the (virtual) address of
the the correct L1 entry to translate va, by walking the page tables in software one level at a time.
vaspace_mappage then uses the result to install the new entry. walkpgdir itself relies on its own
helper function pte_get_next_table, also shown in Figure 2, which implements a single-level of
traversal from level n + 1 to level n (and whose specification and proof are therefore parameterized
by page table level), allocating additional levels as needed.

We organize our explanation of the proofs by essentially following execution from the start of
walkpgdir, through execution of pte_get_next_table, and out to its callsite in vaspace_mappage.
While slightly awkward because we start in the middle of the mapping execution, this ordering
allows us to start with the simpler pieces of the proof, and incrementally explain the complexities
of the proofs and kernel invariant, before concluding with the top-level verification.

5.2.1 From Ln+ 1 Entries to Ln Tables. We discuss access to the level 4 table later (Section 5.2.6).
However, for subsequent levels, the base address of level n must be fetched from the appropriate en-
try in the table of level n+1. This is the role of pte_get_next_table (originally Figure 2, with proof
details in Figure 10). It is passed the virtual address of the page table entry in level n + 1, and should
return the virtual address of the base of the level n table indicated by that entry. If the entry is empty
(i.e., this is a sparse part of the page table representation), the code also allocates a page for the level n
table, installs it in the level n+ 1 entry, and establishes appropriate invariants. Figure 10 presents the
function with proof annotations that we will explain shortly, but we first explain the functionality.
pte_get_next_table accepts a virtual address entry which points to a level-n + 1 table entry.

On Line 9, the code checks the present bit of the entry. If the bit is unset, there is no level-n table,
so one must be allocated via pte_initialize (explained shortly, but it essentially allocates a fresh
physical page, and initializes the memory pointed to by entry with that physical address) and
marked present. By Line 20 the entry is known to be valid and contain the physical address of the
base of a level n table. That address is then extracted (Line 20), converted to a virtual address (Line
21), and returned to the caller. We can now discuss pte_get_next_table’s proof of correctness.
While at first glance this code may look like its subtlety is mostly care to distinguish physical
and virtual addresses, it has a highly nontrivial correctness argument, which depends critically
on detailed invariants on how access to page table entries is shared between parts of the kernel.
No prior work has engaged with this problem.
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1 /% @param entry: virtual address of level n+1 entry which should point to a level-n table base
2 @return next: a virtual pointer to the base of a valid level n table */

3 pte_t *pte_get_next_table(pte_t *entry) {

4 pte_t *next;

5 {P  IASpace;q (0, E \ {entryp - v}, m) * rtv <% § x entry >, entryp + KERNBASE * (entryp) «'d Ievel}m,
6 {entryp+KERNBASE P yptegfrac entryp entryv = "qfrac = 1 <> —(entry_present entryv)_‘}m

7 {"entry_present(entryv)'| - Yjco.511 table_root(entryv.pfn) +i* 8 osid v—1}m,

8 /* Reading the page table is entry justified by the virtual pte-points-to */

9 if (!entry->present) {// If the present bit is zero, need to allocate next level

10 {entryp+KERNBASE P uptegfrac €Ntryp entryv = "qfrac = 1 A =(entry_present entryv)"}m,

11 pte_initialize(entry); // Allocate a zeroed physical page and install in entry

12 entry->present = 1; // Install newly-allocated level n table, mark present

13 /*Now we know that entry is initialized, and the condition to access children list holds*/
14 {entryp+KERNBASE P upte,gfrac €ntryp pte_initialized(pfn_set(entryv nextpaddr)) = "qfrac = 1y

15 {ViEO .511- ((table_root (pte_initialized (pfn_set(entryv nextpaddr)))) +i * 8) osid v—1}

16 }

17 {P # IASpace; (0, E \ {entryp > v}), m) * entryp riq _ % rty <95 S}m,

18 {entryp+KERNBASE P upte,gfrac €ntryp (pte_initialized (entryv.pfn))"}rtv

19 {\7’[50 511 ((table_root (pte_initialized (entryv.pfn)))) +i * 8) osid v-1}

20 uintptr_t next_phys_addr = PTE_PFN_TO_ADDR(entry->pfn); // Fetch physical addr of next table
21 uintptr_t next_virt_addr = (uintptr_t) P2V(next_phys_addr); // Convert to virtual address

22 next = (pte_t *) next_virt_addr;

23 return next;

24}

Fig. 10. Ensuring entry points to a valid next-level table, allocating if necessary, returning its virtual address.

For this C presentation of what is really an assembly-level proof, we abuse notation and use
our register points-to for C-level program variables. So on Line 5, entry +, entryp + KERNBASE
means that the register representing the C program variable entry (per the calling convention, rdi)
holds the sum on the right (a constant offset added to the physical address entryp of the entry).
That particular value is one subtlety of the proof related to the aforementioned kernel invariant,
and is explained in Section 5.2.3. The virtual pte-points-to from that virtual address (Line 6) indicates
that it points to a value entryv, a (possibly-unpopulated) page table entry. A virtual pte-points-to
is defined just like the normal virtual points-to of Figure 4, except the physical address (entryp
on Line 6) is explicit in the assertion rather than existentially quantified:

va Fypreq pav:vProp X £ 3s. (Acr3val. cr3val <% §) x va ‘—>g pa*pa > v
This supports memory access rules much like Figure 8’s rules (which are proven sound using the vir-
tual pte-points-to rules as lemmas!) while exposing the physical location being modified. This is use-
ful for page table modifications, which require knowing the physical location being changed. They
are used throughout the software page table walk because entries in any level may be initialized.

5.2.2 Address Space Invariant: Identity Mappings and Conditional Page Table Ownership. Assembly-
level verification of compiler output from Figure 10 is verbose, but largely similar to other assembly-
level verification thanks to Section 4’s logic (including virtual pte-points-to assertions), but only
after resolving two critical challenges. Two key challenges stand out and end up affecting both the
pre- and post-conditions, neither of which has been addressed by prior work. First, the update to the
memory at (virtual) address entry depends on subtle ownership invariants: if the entry is present
then its fractional ownership is shared with a large number of Ly_L;_PointsTo assertions from the
address space invariant (Figure 6), but if the entry is absent the proof requires full ownership to
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IASpace;4(6,E, m) = ASpace_Lookup;4 (6, E, m)*

k 3 (l4e, 13e, I12¢, [1e, paddr). Ly_L;_PointsTo(va, l4e, I3e, I2e, I1e, paddr) | =
(va,paddr) €@
% 3 (gfrac, q, val,va). "va = pa + KERNBASE level > 17 % va %g pa *pat>, {qfrac} val*
(pa,level) eE N [ —
@ Ghost translation @ Physical location

Tgfrac = 1 & —entry_present (val)™ = ("presenth(vaI, level)™ = Vicq.511. ((entry_page val) +i * 8) sid Ievel-l)

® Entry validity @ Indexing into next level of tables
A
where  present_L(val, level) = entry_present(val) A level > 1

ASpace_Lookup;4(6,E, m) 2 ) cr3val. 35,8”."m !! cr3val = Some &7 x AbsPTableWalk(§, 0)  AP2VMappings (&', E

Fig. 11. Address space invariant of Figure 6 extended with a ghost map bookkeeping identity mappings.

update it. We resolve this by extending the address space invariant to make the owned fraction of
the entry’s memory dependent on its own contents. Second, the conversion of physical addresses
into a corresponding virtual address that can be used to modify the specific physical location relies
on subtle, never-before-formalized kernel invariants. Since the key to solving these challenges
is to extend the address space invariant, we first discuss that invariant and the kernel designs it
supports, before returning to the subtle details of verifying lines 12 and 21. The key idea is to
establish extra invariants on physical addresses that are part of a page table — but to do so in a
way that meshes with the existing invariants (in the informal sense) already preserved in most
unverified kernel designs. Each of the above problems requires its own extension to the invariant,
but we will discuss physical-to-virtual conversion first, both because it dictates the organization of
the invariant and because when Line 9’s conditional check is false that is all that is necessary for
the proof; correctness of the conditional branch deals with both extensions.

5.2.3  Physical-to-Virtual Mappings and P2V. Kernels need to convert between physical and virtual
addresses, in both directions. Traversing the page tables in software is the simplest way to convert a
virtual address to a physical address; this is the context we are working up to. However, implement-
ing this virtual-to-physical (V2P) translation in software ironically requires physical-to-virtual (P2V)
translation, because the addresses stored in page table entries are physical, but memory accesses
issued by the OS code use virtual addresses. Because VMM operations are performance-critical for
many workloads, most kernels maintain invariants that enable very fast P2V conversions (rather
than adding another data structure). Specifically, many kernels maintain an invariant on their page
tables that the virtual address of any page used for a page table is a constant offset from the physical
address — a practice sometimes referred to as identity mapping (even though the physical-to-virtual
translation is typically not literally the identity function, but adding a nonzero constant offset).!*
Thus P2V on line 21 of Figure 10 is a macro for adding the fixed constant KERNBASE.

Figure 11 extends the per-address-space invariant to also track which addresses we can perform
a P2V conversion on by adding a constant offset (i.e., the set of physical addresses which participate
in page tables). E is another ghost map, from physical addresses to the level of the page table they
represent (1-4). Only physical addresses in E can undergo P2V conversion. Section 5.2.3 describes
the verification of an actual conversion, but this invariant must be established when adding a new
page table level (notably on Line 11, hence the comment of Line 13).

For each pa — v € E, the invariant contains a virtual points-to justifying that virtual address
pa+ KERNBASE maps to physical address pa (@) in Figure 11); fractional ownership of the physical

14Some kernels do this for all physical memory on the machine, simplifying interaction with DMA devices. On newer

platforms like RISC-V, this sometimes truly is an identity mapping — x86-64 machines are forced into offsets by backward
compatibility with bootloaders that cannot access the full memory space of the machine.
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memory for that page table entry (), which together with (D) is equivalent to a virtual points-to);
and for valid entries (with the present bit set) above L1, ghost map tokens for E for every entry
in the table pointed to by the entry, which can be used to repeat the process one level down (@).
@ becomes part of the precondition to pte_get_next_table: Line 7) says that if the entry is valid
(points to a next-level table) then there are tokens for accessing = for every entry in the next-level
table. By Line 20 the entry is guaranteed to be valid so all tokens for converting the next table
level’s physical addresses to virtual are available (in the form expressed by the assertion on Line 15).

As noted above, for the code path where the conditional does not execute (there was already a
valid entry), this is all we need of the new invariant to verify the end of the function from Line 20
onward. By that point the invariant holds and applies to the definitely-valid entry, so we can the
physical address of the next-level table to a corresponding virtual address via the identity mappings
just described. Line 20 simply retrieves the physical address. Line 21 is the critical piece, and
arguably corresponds to the most subtle verification of an add instruction (add , KERNBASE)
that we are aware of, and something no prior work on verified OS kernels has dealt with.

After Line 20, it is already known that the present bit is set in the entry; Line 19’s assertion
reflects that the tokens for = exist for each word-aligned physical address in the next-level table.
However, note that no argument to this function specifies which virtual address is being accessed,
so pte_get_next_table does not know which entry in the next table to retrieve. Even if that
address were passed, this function is used for each step-down, so the slice of the virtual address
(per Figure 1) is not fixed. Thus Line 21 computes the virtual address of the base of the next-level
table, and the postcondition includes a renamed version of the assertion on line 19, for the caller —
walkpgdir (discussed next) to perform the conversion for The caller determines which entry in that
table must actually be accessed — by selecting the appropriate index into the 512 ghost map tokens
returned in the postcondition, and using the ghost translation and physical location portions of
the invariant to assemble a vpte-pointsto that justifies the caller’s subsequent access to a particular
entry of the returned table. The postcondition also passes back the per-address-space invariant
with the identity mapping resources for entry still pulled out (it was removed by the caller).

5.2.4  Self-Conditional Fractional Ownership and Installing a New Table. The fractional ownership
of the entry’s physical memory is subtle. As noted above, a valid entry must coexist with the
fractional ownership from Ly_L;_PointsTo and therefore have less than full ownership, but in the
case where the entry is invalid, Line 11 must have full permissions in order to populate the entry
(i.e., to install a reference to a next-level table). Fortunately, the entry can only be in use if its valid
bit is set; if the valid bit is not set, we know that no virtual points-to entry in § or 8 holds any partial
ownership. But determining this requires reading the very memory whose ownership is being
determined. We use the invariant portion annotated as “Entry validity” () in Figure 11 to capture
this: if the entry is invalid the invariant holds full ownership of the entry, so it can be updated,;
while if the entry is valid, the invariant owns only a constant nonzero fraction sufficient to read
but not modify the entry. Since the fractional ownership is always non-zero, Line 9 in Figure 10 can
read the entry (using a rule similar to WRITETOREGFROMVIRTMEM, tailored to virtual PTE-points-to
assertions), and if the entry is dynamically found to be invalid, the invariant is refined (Line 10)
to indicate full ownership, allowing updates. Note that the caller is responsible for providing this
conditional ownership, having pulled it out of the invariant earlier. This is why the precondition
(Line 5) explicitly excludes the entry’s physical address from the invariant (£ \ {entry}) — its
relevant assertions have already been borrowed by the caller.

If the entry is not set, pte_initialize allocates a physical page for use as the next-level table.
pte_initialize (Figure 12) calls kalloc to allocate a physical page (Figure 12 Line 4), and installs
it into the entry (Line 5). The page-allocator’s kalloc is the only unverified (trusted) code in our case
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/* @param entry: virtual address of non-present entry to initialize with a new physical pagex*/
{IASpace;q (6, E, m) = ~(entry_present entryv) * entryp+KERNBASE 1 entryp entryv + (entryp) eid level}
void pte_initialize(pte_t *entry) {
pte_t *local = kalloc(); // Allocate a full zeroed page for 512 8-byte entries
entry->pfn = PTE_ADDR_TO_PFN((uintptr_t) local);
{IASpaceid (0, E, m) * —~(entry_present entryv) * entryp+KERNBASE +—pte,1 entryp pfn_set(entryv nextpaddr)}
{rtv <95 § % Vieo.511. ()table_root (pte_initialized (pfn_set (entry_val nextpaddr))) + i * 8) >4 Ievel—]}m,
3

0 NN NG R W N =

Fig. 12. Allocating a physical page

study.’® Since we are using pte_initialize for page-table address allocation, we must relate this newly
allocated physical address to the identity mapping map = — see Line 11 in Figure 10, where kalloc’s
specification guarantees it has returned memory from a designated memory pool that is already
mapped '® and satisfies the offset invariants (trivially, as the new page is zeroed). The presence bit
of the entry is not set during pte_initialize, but upon return to pte_get_next_table, where it
will validate the conditional ownership discussed above. pte_initialize has a full-permission
virtual pte-pointsto in its precondition. Then the assertions that hold after Line 13 of Figure 10 are
enough to establish the same page table invariants which hold in the case where the entry was
already valid, by updating the current address space’s entry.

5.2.5 The Specification of pte_get_next_table. Note that the specification does not assume a
specific page table level and is used for all three level transitions (4 to 3, 3 to 2, 2 to 1). The logical
parameter v represents the level of the entry passed as an argument (c.f. the token (entryp) <4 v
witnessing that entryp is part of the page table invariant on Line 5). This comes into play with a key
subtlety of pte_get_next_table’s specification: its precondition includes a virtual pte-points-to
(discussed earlier, Line 6) but its postcondition does not yield new virtual points-to assertions! It
merely computes the base virtual address of the next table, and returns adequate tokens (Line 19)
for the caller to construct a vpte-points-to for any entry of the next table level.

5.2.6 Walking The Page Tables: Calling pte_get_next_table for Each Level. Implementing a software
page table walk amounts to calling pte_get_next_table for each level as shown in Figure 13.
walkpgdir traverses the page table anchored at 14 (the virtual address of the base of the L4 table)
and returns the virtual address of the L1 entry that should map the virtual address va. For each
level, walkpgdir locates the appropriate entry by using the level-specific slice of va to index into
that table (simulating the hardware translation as in Figure 1), and passes the virtual address of
that entry to pte_get_next_table to get the base of the next level down. For example, Line 5
uses L40ffset (a bit shifting and masking macro) to extract bits 39-47 of va, and uses that to
find the address of the L4 entry that would map va in the address space. That is then passed to
pte_get_next_table on Line 9, which returns the virtual address of the base of the L3 table. This
process repeats for 3-to-2 (Lines 14-21), and 2-to-1 (Lines 22-23), after which Line 24 returns the
virtual address of the appropriate L1 entry.

15This is an allocator for regions of pre-zeroed physical memory that is mapped, but not accessed by the allocator itself, as
is typical for slab allocators [14]. Its verification would be similar to verifying a usermode malloc verification [19, 73], just
with additional invariants on the memory pool.

16A reasonable reader might wonder where this pool initially comes from and how it might grow when needed. Typically an
initial mapping subject to this identity mapping constraint is set up prior to transition to 64-bit kernel code (notably, a page
table must exist before virtual memory is enabled during boot, as part of enabling it is setting a page table root). Growing
this pool later requires cooperation of physical memory range allocation and virtual memory range allocation, typically by
starting general virtual address allocation at the highest physical memory address plus the identity mapping offset. This
reserves the virtual addresses corresponding to all physical addresses plus the offset for later use in this pool, as needed.
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1 /% @param 14: the (virtual) address of the L4 page table tree

2 @param va: virtual address to be translated and mapped */

3 pte_t *walkpgdir(pte_t *14, const void *va) {

4 {P # " 14p = rtv? * Trtv+ KERNBASE = 147 * (14p + 8 * L4Offset(va)) sid 44 IASpace;q (0, =, m) = rtv s 5}rtv
5 pte_t *14_entry = &14[L40ffset(va)]; // Virtual address of L4 entry

6 {P « TASpace;q (0, E \ {14p+8*L4Offset(va)}, m)  rtv <95 5« "qf4 = 1 <> —(entry_present I4e7va|)1},tv

7 {entryfpresent(MefvaI) -« Yico0.511 (table_root(l4e_val)+ i * 8) oid 3}rtV

8 {14p+KERNBASE+L4Offset(va) —ypie,qfa (14p+L4Offset(va)) lde_val} ey

9 pte_t *13 = pte_get_next_table(l4_entry);
10 /*pte_get_next_table may have allocated a new page which updates entry valuex/
11 {P  IASpace;q (0, \ {l4p+8*L4Offset(va)}, m) * rtv <95 § % "qfd = 1 &> —(entry_present I4e_val)"}r»cv
12 {Vz‘eousn (table_root(l4e_val’.pfn) + i * 8) <>id 34 T|3-KERNBASE = tablefroot(|4e7val’.pfn)"}
13 {I4p+KERNBASE+L40ffset(va) Fupteqfa (14p+L40fFset(va)) I4e_val}m/
14 pte_t *13_entry = &13[L30ffset(va)]; /* Virtual address of L3 entryx/
15 {713 + L3Offset(va)*8 = 13p A table_root(l4e_val’.pfn) = 137 } 4,
16 {P « IASpace;jq (0, E \ {l4p+8*L4Offset(va), 13p+8*L3Offset(va)}, m) = rtv s 6}rt\,
17 {vl‘go__S]]\{L:goffset(va)} (table_root(l4e_val.pfn) +i * 8) «id 3}”\/
18 {|4p+KERNBASE+L40ffset(va) P uptegfa (14p+L4A0fTset(va)) l4e_val = "qf4 = 1 & —(entry_present |4e7va|)1}m,
19 {I3p+KERNBASE+L30ffset(va) Fyptegfs (13p+L30ffset(va)) [3e_val + "qf3 = 1 <> —(entry_present I3e_val)"},tV
20 {entryipresent(l?»eival) - Vico.511 (table_root(I3e_val.pfn) + i * 8) oid Z}m,
21 pte_t *12 = pte_get_next_table(l3_entry);
22 pte_t x12_entry = &12[L20ffset(va)];
23 pte_t *11 = pte_get_next_table(1l2_entry);
24 return &11[L10ffset(va)]; // Return virtual addr of L1 entry with a similar index computation
25} {Rwalk * Rie }rtv

Fig. 13. Walking page-table via calls to pte_get_next_table in Figure 10

"13 + 8 = L3Offset(va) = I3_entry A 12 + 8 « L20ffset(va) = 12_entry A |1 + 8 « L10ffset(va) = I1_entry
Atable_root(l4e_valy,) = I3 A table_root(I3e_valg,) = 12 A table_root(I2e_val,g) =117+

P = IASpace;q(0, E \ {l4p+8”L4Offset(va), [3p+8*L3Offset(va), I2p+8*L20ffset(va), | 1p+8*L10ffset(va)}, m)*
(14p + 8 * L4Offset(va)) <9 4% (13p + 8 » L3Offset(va)) —>'d 3«

(12p + 8 * L20ffset(va)) sid 4 (I1p + 8 % L10ffset(va)) <9 1«

rtv <95 § « (14p+KERNBASE+8*L40ffset(va)) Hyptegfa (14p+87L4OSfset(va)) l4e_valx
(I3p+KERNBASE+8*L30ffset(va)) H—yptegf3 13p+87L3O0ffset(va) 3e_val«

(12p+KERNBASE+8*L20ffset(va)) o ypte gf2 12p+8*L20ffset(va) 2e_val

Rjje = (I1p+KERNBASE*8*L10ffset(va)) o ypte g1 11p+8*L10ffset(va) [1e_val + "qf1 = 1 <> —(entry_present I1e_val)™

Rwalk =

Fig. 14. Ryalk: Resources obtained from invariant during a software page table walk in Figure 10

In Figures 13 and 14, there are four related concepts for each level. l4p is the physical address
of the L4 table base; 14 is the corresponding virtual address (using the same name for the value
and the program variable name for brevity, since the variable is not reassigned); 14_entry is the
virtual address of the L4 entry used to translate va; and l4e_val is the value of that table entry.
Other levels are named consistently. For each of the three level transitions, the main challenges for
the proof are to construct a virtual pte-points-to assertion for the entry in that level’s table, and
pass the conditional assertion discussed in Section 5.2.3 that if that entry is present then there are
identity map tokens for the the physical address of each entry in the subsequent level’s table. For
traversing the L4 table, this proceeds by exchanging the relevant identity map token provided in
the precondition (Line 4) and pulling the resources for physical address |4p + 8 « L4Offset(va) out of
the identity map invariant: parts () and ) of Figure 11) give a virtual pte-points-to, and 3) and @
satisfy other parts of pte_get_next_table’s precondition. This justifies the call on Line 9, which
returns the virtual address of the base of the appropriate L3 table and whose postcondition includes
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1 /% @param 14: the virtual address of the root of the page table tree

2 @param va: virtual address to be translated and mapped

3 @param fpaddr: physical address of a zeroed page to map if va is not already mapped */
4 void vaspace_mappage(pte_t *14, void *va,uintptr_t fpaddr ) {

5 {P (l4p+8*L4Offset(va)) —'d 4« IASpace;q (6, E, m) * rtv <95 §x 70 1! va = None ™ }ryy

6 pte_t *pteaddr = walkpgdir(l4, va);

7 {Rwalk * Rlle}

8 if (!pteaddr->present){

9 /*The entry is not presentx*/

10 pteaddr->pfn = PTE_ADDR_TO_PFN(fpaddr); /*Store updated entry back to L1 entry */

11 {I]_entry+KERNBASE ypte,1 [1_entry (set_pfn(l1e_val, ADDR_TO_PFN(fpaddr))) * "~ (entry_present I1e_val)"}

12 pteaddr->present = 1; // Set the present bit in entry

13 3

14 { (N_entry+KERNBASE > ypte gfrac 11_entry l1e_val = (entry_present ITe_val)™) V ("= (entry_present I1e_val)” }
#[1_entry+KERNBASE > ypte 1 11_entry (set_pfn(l1e_val, ADDR_TO_PFN(fpaddr))))

15 3
Fig. 15. Specification of updating L1 entry to reference a new page (fpaddr).

512 identity map tokens for each of those entries (anchored to the returned virtuall address minus
KERNBASE). That invariant (Line 12) is analogous to the one that justified the 4-3 step (Line 4),
and the next two steps proceed the same way.

Even given the slight adaptation of our assembly-level proof for the C-level presentation in Figure
13, the proof outline in the figure omits some repeat intermediate assertions for readability. But by
Line 19, it should be clear that the proof accumulates a set of similar assertions for each level. Figure
14 expands the abbreviated postcondition to the full set of facts that are accumulated in this way.
Rwalk together with Ry, nearly entail L4_L1_PointsTo (Figure 3) within the logic, forming the basis
of the construction of a new virtual points-to for virtual address va. walkpgdir’s execution observes
most evidence of an address translation for va, at least down to a possibly-invalid L1 entry (which
walkpgdir’s caller, vaspace_mappage, will check). Each virtual pte-points-to in Ry, internally
contains the physical points-to portion of one page table walk step for L4_L1_PointsTo, and the
pure assertions in Ry ensure the address arithmetic works. Rje includes the self-conditional
fractional ownership of the L1 entry (Section 5.2.4) for the caller to initialize the entry if it is empty,
so the caller can complete a virtual points-to assertions for a newly-mapped page, as we discuss next.

5.3 Mapping a New Page

Finally we come to the top-level routine for mapping a new page of memory into an address space by
updating page tables — the vaspace_mappage function in Figure 15. Again, our verification was car-
ried out at the assembly level, but presented as on the original C for readability, and the proof outline
omits all relevant facts in favor of the most critial assertions involved in the key parts of the proof.
vaspace_mappage is typically called by a page fault handler, to map a previously-reserved but lazily-
allocated page. It is passed the virtual address of the L4 table base (14), the virtual address to map (va),
and the physical address of an empty memory page which should be used as backing memory for va
and its surrounding page. It begins by calling walkpgdir (Line 6) to return the virtual address of the
L1 entry which corresponds to va (allocating intermediate tables as needed). It then checks if the en-
try is already initialized. If not, fpaddr is installed into the L1 entry, which is then marked valid (set-
ting the present bit), and the page is mapped. Unmapping is the reverse of the logic we discuss here.
For brevity this example is specialized to the case where va is known to not be mapped: the
precondition on Line 5 includes 0 !! va = None; generalization to returning an error if it is already
mapped is straightforward. The precondition on Line 5, directly entails the precondition of the
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walkpgdir call.!” walkpgdir, as just discussed, returns the virtual address of an allocated L1 entry
and its postcondition contains almost all of the information needed to construct a virtual points-to
for va — except information about the L1 entry being present and pointing to a data page. We
already discussed for the upper level page-tables how the entry-present checks are handled, and
Line 8 is similar: R}, includes the self-conditional fractional permission for the L1 entry, so as it is
not present, by Line 10 it is known that full permission is held to update that entry. Lines 10 and 12
are verified using the pte-points-to memory store rule. In the assembly proof, this is a bitwise-and
of the word-aligned fpaddr with 1 (setting the present flag), yielding a single store.

6 Related Work

We will discuss two streams of related work: OS verification, and program logics with modalities.

OS Kernel Verification. There has been relatively little prior work on formal verification of virtual
memory. Most OS verification work minimizes reasoning about virtual memory management.
The original VERISOFT project [1-3, 3, 26, 43, 68] relied on custom hardware which always ran
kernel code with virtual memory disabled, removing the circularity that is a key challenge of
verifying VMM code for real hardware: at that point page tables become a basic partial map data
structure to represent user program address translations, with an idiosyncratic format. Subsequent
OS verification work targets real hardware that uses virtual addressing in the kernel, but unsoundly
uses hardware models that do not. Thus they trust that the particular page table manipulations
do not, for example, unmap kernel code (which can crash the machine even if done “temporarily”).
This is true for seL4 [49, 50, 67], whose formal machine model omits address translation, and
CeRTIKOS [17, 40-42], whose refinement proofs rely on CompCERT’s usermode-oriented memory
model [56, 57] which assumes updates to one memory address are independent of updates to another
— which is not true of page table updates. Other work on OS verification either never progressed
to VMM verification (VERISOFT XT [22-25]), or uses memory-safe languages for process isolation
instead of address translation (SINGULARITY [9, 36, 46, 47], VERVE [74], and Tock [58]), ensuring
memory safety, but ignoring other functional uses of virtual memory hardware, like swapping [30]
or exploiting copy-on-write techniques for dynamic migration of virtual machines [21].

These limitations motivate work like ours on reasoning soundly about virtual memory manage-
ment. As discussed earlier, Kolanski and Klein [51] are the only other researchers to study VMM
verification against a realistic hardware model, where page table updates are performed through
virtual memory accesses (later adding C-level type modeling [52]). As noted in Section 4.1, Kolanski
and Klein’s virtual points-to is similar to that in Figure 3, with the attendant problems discussed
earlier and lifted by our model. Their approach had modal elements, but did not tackle evaluations
that would benefit from modality. Our work improves significantly on the technical capabilities
of ther logic and evaluates on kernel code that is more complete and more challenging than theirs.

Our modal approach makes it possible to specify address space changes cleanly, which their
logic cannot do at all. Our use of virtual pte-points-to assertions enables nearly the same proof
rules as standard memory accesses, and constructing virtual points-to information within the logic
(c.f. the logical entailment between Ryaik and Ls_L;_PointsTo) whereas Kolanski and Klein must
reason semantically about when the model state supports new virtual points-to assertions.

Kolanski and Klein verify the critical step of updating an already-located L1 entry to map
a new page (ARM assembly corresponding roughly to Lines 10 and 12 in our Figure 15), but
ignore the essential code preceding that step — which as our walkpgdir and pte_get_next_table
verifications demonstrate, side-steps a significant amount of complexity and critical reasoning tasks.

7The proof of vaspace_mappage’s caller would extract this single identity map token for the specific L4 entry from a set of
512 that are part of the kernel invariant, as walkpgdir’s proof does for lower levels.
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We have verified the entirety of the software page table walk up to mapping a new page, aside
from a trusted physical memory allocator resembling malloc [19, 73]. As a consequence of tackling
this larger verification challenge, our work is the first to formally specify large segments of the
self-referential portion of an OS kernel’s virtual memory management invariants (per Sections 5.2.3
and 5.2.4), and to reason about converting from physical addresses to virtual addresses efficiently.

Due to a lack of fractional permissions in their formalism, they incidentally pick up other limita-
tions orthogonal to their foundational focus: by requiring a virtual points-to have full ownership of
the page table walk memory, they limit their system to having only as many virtual points-to asser-
tions as there are entries in the top-level table (512) because they cannot share access to entries. We
inherit fractional permission support form Ir1s, and use it extensively (the overly-restrictive Figure
3 is already an improvement in this way). While we cannot claim credit for Ir1s’s extensive feature
set, the fact that the model of our assertions is based on a classic algebraic tool (pointwise lifting)
makes our approach compatible with other logical bases as well, such as PuLseCore [35] or VST [5].

Kolanski and Klein prove that updates to any memory locations that are not part of the page
tables do not affect the interpretation of other memory addresses, just like on real hardware. This
implies that programs that do not modify memory mappings could be reasoned about without
concern for mappings. An analagous result should hold of our model (though we have not proven
it). Informally this is visible in the rules for mov instructions, which are nearly identical to rules
in a VM-ignorant logic [19, 63]. In principle both our approach and Kolanski and Klein’s could
be extended to account for pageable points-to assertions by adding disjunctions to an extended
points-to definition, which would be the appropriate next step to extend reasoning to usermode
programs running with a kernel that may demand-page the program’s memory.

As noted in Section 2.1, we do not formally model or reason about translation lookaside buffers
(TLBs). TLB flushes are necessary when a page is unmapped, or when switching address spaces.
This occurs in few places in uniprocessor kernels (in some, only 3 locations), so full verified
kernels including seL4 [49, 50] and CERTIKOS [40, 41] trust TLB management. Neither of the
aforementioned systems has a hardware model including a TLB, so neither is able to verify TLB
management in any form — they must trust its operation. This is true of multicore verified kernels
as well [41, 71], though there the situation becomes much more challenging: when unmapping
pages, the running CPU must invalidate the relevant TLB entries locally, but also send an inter-
procesor interrupt (IPI) to all other cores to ensure they also invalidate affected entries on their
TLBs. No formal hardware model currently exists for IPIs on any architecture, or even for the
memory-mapped IO used to trigger those IPIs.

The only work to tackle TLB code verification was Syeda and Klein [69, 70], who are also the only
prior work on verifying address-space-aware context switching. However, they verified only the 4
instructions to switch address spaces and update the TLB on an ARM processor, in isolation (i.e.,
not the full context switch including changing stacks with address spaces). The specification they
proved for those instructions did not address program invariants that may be valid in one address
space and not the other, so is not flexible enough to extend directly to a full context switching
primitive as in Figure 9. Their logic adds an assertion tracking known-inconsistent addresses (i.e.,
recently-unmapped by a table update or change in page table root) and their memory access rules
require accessed memory to lie outside that set. However in their logic, reasoning about updates
to the inconsistent set (from a page table update) requires direct reasoning directly about the
physical memory heap, which limits modularity. The right general solution would be to combine
our work and an extension of theirs, a substantial project which we leave to future work. No
other prior work has considered address space changes during context switching. XCAP [63] and
Bedrock [18-20] deal only with usermode threading (in a single process). CERTIKOS and sEL4 trust
assembly primitives for context switches, and do not model address translation for executing code.
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Program Logics with Modalities. Modalities have long been a staple of program logics, at least since
Dijkstra’s weakest precondition calculus [32] and Pratt’s observation the Hoare triples could be de-
composed using the weakest-precondition modality of dynamic logic [65], in a form quite similar to
what Ir1s uses today [48]. Variants of Nakano’s later modality [61] have long been used to deal with
step-indexing for impredicative and recursive features of logics and type systems [6, 10, 11, 45, 48].

As noted earlier, our other-space modality derives from hybrid logic [7, 12, 37, 38], where modal-
ities are indexed by nominals which are names for specific individual states in a Kripke model.
Readers mostly familiar with modalities in prominent program verification approaches [6, 10, 11, 45,
48, 61, 64, 65] may not recognize hybrid logics, but as we discuss in Section 6, they (like temporal
logics) trace their roots back to Arthur Prior in the 1950s. Little prior work combines these ideas
with program logics. Brotherston and Villard [15] show that traditional nominals extends the
expressive power of separation logic. Gordon [39] uses nominals to refer to states of other actors
in an actor language. In parallel with our work, Wagner et al. [72] use a hybrid-logic-inspired
modality to abstract reference-counting specifics from specifications of a low-level application
binary interface (ABI) — their @; (P) indicates that [ is the location of a reference count for resources
satisfying P. Beyond these, there is limited work on the interaction of hybrid logic with general
substructural logics, in restricted forms that do not affect expressivity [16, 31].

Some logics for weak memory models [27, 28] have been formalized in Ir1s using pointwise
lifting, parameterizing by thread-local views of events (an operationalization of the release-acquire
+ nonatomic portion of the repaired C11 memory model [55]). There modalities A, (P) and V,(P)
represent that P held before or will hold after certain memory fences by thread 7. The definitions of
those specific modalities existentially quantify over other views, related to the “current” view (the
one where the current thread’s assertions are evaluated), and evaluate P with respect to those other
views. This approach to parameterizing assertion semantics by a point of evaluation, and evaluating
modalized assertions at other points quanfied in the definition of a modality, is the classic notion
of modal assertions, whereas hybrid logics expose the choice of evaluation point in assertions,
allowing statements of more properties. In these weak memory examples this additional expressive
power would not be useful, because any relevant points of evaluation (thread views) are intimately
tied to memory fences performed by the program, whereas for virtual memory management the
kernel must be able to choose or construct arbitrary other address spaces.

7 Conclusions

This paper advances the state of the art in formal verification of programs manipulating virtual
memory mappings. We treat assertions about virtual memory locations explicitly as assertions in a
modal logic, where the notion of context is a particular address space, named by the page table root.
We improved the modularity of our reasoning about virtual address translation and virtual points-to
assertions to permit page table modifications that preserve mappings without collecting all affected
virtual points-to assertions. To specify of code involving other address spaces, we adapt hybrid
logic’s notion of modalities explicitly naming alternative conditions. We implemented these ideas in
a derived separation logic within Ir1s, and proved soundness of the rules for essential memory- and
address-space-change-related x86-64 instructions against a hardware model of 64-bit 4-level address
translation. Finally, we used our rules to verify the correctness of key VMM instruction sequences,
including the first assembly-level proof of correctness for a change of address space expressing
which assertions hold in which address space, the first physical-to-virtual translation proof, and
the first verification of a software page table walk, all of which are beyond reach of prior work.
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