
The Linguistics of Programming
Colin S. Gordon

Department of Computer Science
Drexel University
Philadelphia, USA

csgordon@drexel.edu

Abstract
Research in programming languages and software engineer-
ing are broadly concerned with the study of aspects of com-
puter programs: their syntactic structure, the relationship
between form and meaning (semantics), empirical proper-
ties of how they are constructed and deployed, and more.
We could equally well apply this description to the range
of ways in which linguistics studies the form, meaning, and
use of natural language. We argue that despite some notable
examples of PL and SE research drawing on ideas from natu-
ral language processing, there are still a wealth of concepts,
techniques, and conceptual framings originating in linguis-
tics which would be of use to PL and SE research. Moreover
we show that beyond mere parallels, there are cases where
linguistics research has complementary methodologies, may
help explain or predict study outcomes, or offer new perspec-
tives on established research areas in PL and SE. Broadly, we
argue that researchers across PL and SE are investigating
close cousins of problems actively studied for years by lin-
guists, and familiarity with linguistics research seems likely
to bear fruit for many PL and SE researchers.

Keywords: programming languages, software engineering,
linguistics

ACM Reference Format:
Colin S. Gordon. 2024. The Linguistics of Programming. In Proceed-
ings of the 2024 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software
(Onward! ’24), October 23–25, 2024, Pasadena, CA, USA. ACM, New
York, NY, USA, 21 pages. https://doi.org/10.1145/3689492.3689806

1 Introduction
Programming language and software engineering research
are centered around computer programs: their construction
process (both social and technical), how they are expressed,
what guarantees we can make of them, how they interact

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
Onward! ’24, October 23–25, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1215-9/24/10.
https://doi.org/10.1145/3689492.3689806

with additional artifacts (such as comments, design docu-
ments, and natural language specifications), how people com-
prehend them, and what common properties the languages
used to build them either have or could have (by design)
and how those interact with what a program expresses (a
computational solution).

Linguistics is concerned with analogous ideas for human
languages, rather than programming: what are commonali-
ties across languages, how do those differences interact with
language use, what bounds can be established on how lan-
guages might evolve to express (or leave implicit) certain
information, how language use might vary according to use
case or social context, how to systematically and precisely
model natural languages, and more.

While the two fields have clear differences — in particular,
studying engineered languages versus naturally evolving
languages — linguistics offers a wealth of ideas, perspectives,
and established analytical tools (both formal and informal)
which we believe can help shed light on problems of inter-
est to researchers in programming languages and software
engineering.
This essay seeks to give a broad overview of pieces of

linguistics with clear relevance to problems actively stud-
ied in computer science. Out of neccessity this means our
discussions will only scratch the surface of the field and can-
not include all possible points of connection; our priority is
to demonstrate a number of places where connections may
occur, and provide entry points to the literature for those
interested in problems like those we highlight, or those who
see relevance between the linguistic concepts we point out
and other problems.

2 Parallels Between Linguistics and PL/SE
Linguistics is an enormous area, neither strictly science nor
strictly humanity, but, as the meme goes, a secret third thing
(i.e., both). It generally covers such topics as syntax (roughly,
grammar); semantics (roughly, literal meaning); pragmatics
(how and why language is used certain ways rather than
others in a given situation, and how words that literally
mean one thing can acquire additional meanings in context);
discourse analysis (study of ongoing linguistic interactions);
morphology (the relationship betweenword forms andmean-
ings, such as the relation between word form changes and
meaning change); orthography (the study of writing sys-
tems); phonetics and phonology (the study of how speech

https://orcid.org/0000-0002-9012-4490
https://doi.org/10.1145/3689492.3689806
https://doi.org/10.1145/3689492.3689806

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Colin S. Gordon

sounds are generated and sensed, and how they change situa-
tionally or over time); psycholinguistics (how people acquire
and use language); and neurolinguistics (how language is
represented and processed in the human brain); and inter-
faces between these areas. Virtually every area of linguistics
has at least a rough parallel in existing PL and SE literature.

We are not the only ones to notice parallels between pro-
gramming languages and linguistics. Adamczyk [2] explores
a bit of the history of the word “language” applied to com-
puter programs, and engages in some philosophical musing
and thought experiments based on some of Stephen Pinker’s
ideas about language.1 Recently Noble and Biddle [130] pub-
lished an extended argument that programming languages
are, in a meaningful sense, languages in the sense of those
studied by linguists, in that they are critically linguistic com-
munications between various parties (from programmers to
other programmers or to machines, depending on context),
regardless of the differences that obviously exist. Their argu-
ment is philosophical, calling out numerous similarities be-
tween programming languages and human languages. How-
ever, they leave the question of what to do with these similar-
ities up to the reader. This essay’s life began before the publi-
cation of that paper, but could be seen as a kind of follow-up
providing more fine-grained connections: our goal is to point
out concrete ideas and techniques from linguistics that have
potential value to the study and creation of programming
languages and the processes of software engineering.

Distinguishing NLP from Linguistics. In this paper
we seek to make a distinction between natural language
processing (NLP) on one hand, and linguistics (including
computational linguistics) on the other. To be sure, there
is no hard and fast dividing line between the two and they
share a wealth of background knowledge and techniques,
but there are marked differences in the primary goals of
each area. In the sense we use the terms, NLP is focused
quite literally on processing natural language text for end
use cases such as extracting information, question answer-
ing, statistical language modeling for sequence prediction,
etc. Linguistics is interested in understanding “how language
works” (and why) in essentially all contexts. Beyond the task-
driven vs. curiosity-driven framings (which are not mutually
exclusive!), these differences in goals result in different value
systems for which questions to investigate and which tech-
niques are appropriate. At times these value systems agree,
and other times they do not. These differences primarily
manifest in NLP work frequently discounting fundamental
assumptions or established results from linguistics, in almost
any case where outcomes on a particular metric appear to

1He notes that those ideas are not settled interpretations in linguistics, citing
Tomasello [178]; however, this is an understatement: the consensus across
linguistics has long been that most of Pinker’s ideas about language in
that book are incorrect, and largely based on selectively ignoring contrary
evidence [78, 116, 152, 178] [79, Ch. 10].

be better using a technique that doesn’t account for them.
For example, most uses of large language models (LLMs) for
chat or text processing do not attempt to explicitly model the
meaning of language; these LLMs underlie the best-known
results on a wide array of tasks, in both NLP and software
engineering, but fail to capture basic concepts like simple
boolean reasoning [50, 134, 179], do not demonstrate cer-
tain kinds of linguistic reasoning essential to human lan-
guage use [147], and are provably unable to learn essential
concepts like universal quantification [7]. For many appli-
cations, this may not matter, so NLP continues using these
tools widely.2 Conversely, while (computational) linguistics
is not agnostic with regards to computational efficiency and
scaling laws,3 explanatory power is generally prioritized over
computational convenience (many grammar formalisms are
Turing-complete [26, 27, 139]), and often more attention is
paid to the construct validity of measurements, rather than
over-using simple task metrics like BLEU scores [135].4 In
this essay, we will emphasize drawing upon work focused
primarily on how and why language works.

On Large Language Models. A natural question for this
essay in 2024 might be: how much will we discuss the large
language models (LLMs) underlying systems like ChatGPT
and a plethora of other tools? The answer is, almost none.
Our goal is to encourage researchers in programming lan-
guages and software engineering to study linguistics broadly,
to bring a wealth of new relevant ideas and tools to bear on
our work. We don’t need to say anything about LLMs for that
to happen— it has already happened! In general, PL and SE re-
searchers have a long history of adopting the latest statistical
and probabilistic models where useful and appropriate. For
similar reasons, we say little about neurolinguistics, as this
connection is already starting to be explored [138, 167, 168].
LLMs are only a small slice of linguistics, whose import

in linguistics writ large seems distorted to those of us in
computer science, as we are closest to the computational
linguists, whose work in the past 15 years has been largely
overwhelmed by the influence of neural language models.

2This is not to suggest linguistics is completely disinterested in LLMs; on
the contrary they are being investigated with care as approximate models
of some specific aspects of human language use, such as surprisal [65] (rel-
evant to ways in which using non-standard language affects how long it
takes humans to comprehend text), and even language acquisition [38, 185]
(though this is fraught with significant methodological pitfalls [102]).
3For example, one justification for studying mildly-context-sensitive gram-
mar formalisms [93, 94, 106] is that they can be parsed in polynomial time,
which seems like a reasonable rough upper bound on what humans can
process online during linguistic interactions [164], compared to simply
requiring parsing to be decidable.
4BLEU was a heuristic scoring mechanism proposed for evaluating accuracy
of machine translation, premised among other things on input and output
having similar length, making it inappropriate for use in tasks that involve
summarization as well — including scoring of comment generation [44, 165,
169] — in addition to concerns about fitness for its original purpose [24].

The Linguistics of Programming Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

However, linguistics is far, far broader than that. Any im-
pression that all of linguistics has been overtaken by LLMs
is similar to a layperson who believes that developers have
basically stopped programming and are simply using Chat-
GPT to generate most of their code — understandable based
on their most common source of information (for us, NLP
researchers in our departments, for them, popular press and
marketing material), but based on skewed and highly incom-
plete sources of information. Our emphasis in this essay is
to argue for the rich body of explanatory models from lin-
guistics, which are largely orthogonal to the LLMs already
widely adopted in our fields.

APlan for Discussion. The rest of this essay is structured
as a tour of just a few select areas of parallels between linguis-
tics and PL and SE research. We will discuss examples that
deal with applying linguistics knowledge to both humans
and to text. That text may be either natural language text
about programs, or program text itself (source code). We will
work from higher-level concerns about human factors and
what research hypotheses we consider, towards lower-level
concerns of methodological questions and technical devices
suitable for incorporation into tools. It is our hope that the
breadth of discussion, from the human to socio-technical to
purely technical, will demonstrate that regardless of which
slices of programming language and software engineering
research we engage with, there is a wealth of established
linguistics knowledge just waiting to be applied.

3 Human Factors in Language and Tool
Design

Software engineering has long made significant use of ideas
connected to HCI and psychology to study how develop-
ers work, and consequently, how tools might better support
these natural working processes [30, 58, 100, 111, 112]. How-
ever, we are not aware of any direct influence from linguistics
on work related to the human factors of programming de-
spite likely relevance when considering text-mediated inter-
actions. Well-established linguistics concepts articulate how
humans often recognize subtle meanings in natural language
prompts and instructions which can affect their performance
on tasks in studies. And decades of research studying how
humans learn natural languages seems to have direct appli-
cation to how humans learn programming languages.

3.1 Pragmatics
The area of pragmatics within linguistics is the study of how
language choices are made with an eye towards communica-
tive intents: cases where an utterance5 (or perhaps, program)
is structured to not only convey some fact or knowledge (or
functionality), but also to emphasize some aspect of what is
5Any linguistic fragment, from an expression to a sentence to a passage of
text or more, whether spoken, written, signed, or communicated by other
means.

uttered as particularly salient, or more generally to commu-
nicate more than literal meaning (e.g., to imply something
by choice of wording without saying it explicitly). This latter
and most general framing is called implicature [70]: the en-
richment of literal meaning with what was likely intended by
the speaker, and specifically intended by the speaker for the
recipient to understand — again, without explicitly saying so.
Central themes of pragmatics emphasize the idea that

communication is geared towards a specific purpose, and to-
wards a specific audience. Most work in pragmatics assumes
that the speaker (or author) and hearer (or reader) have cer-
tain common background knowledge that both are aware
of, and are cooperating towards a certain communicative
goal. Under these assumptions, it is commonly believed6 that
speakers say only asmuch as is necessary tomake their point,
and no more, in part because they expect recipients to be
able to infer certain implications called implicatures [70, 89].
Under the assumption that humans who behave in these

ways with non-technical communication carry at least some
of these behaviors into technical settings, this has clear rele-
vance to any analysis of program-related text (as in Section 5)
or any other natural-language artefact associated with soft-
ware — including how study participants or users interpret
instructions or specifications.

Classic introductory examples include:

• Conversational Implicature: Indirectly answering “Did
you get the code working?” with “I’ve spent the last
week debugging” does not directly literally answer
the question, or logically imply success or failure at
the task. But it strongly suggests the time was spent
debugging without success, and this is moreover the
likely intended point the speaker wished to make.

• Deixis: Deixis deals with contextual reference. Con-
sider the comment “The next line of code. . . ” in the
midst of some code. This is a form of textual deixis. This
refers to a specific line by virtue of where the comment
is located in the program text, and moving it to an-
other location would change the comment’s referrent
(as well as probably making it incorrect). Similar deixis
occurs in comments that refer to the current method,
class, or project, or to invariants that are expected to
hold at specific program locations.

• Presupposition:7 Consider comments along the lines
of “This method is called when the Foo component. . . ”
which presupposes both the existence of a component
known as Foo, and that the reader of the comment
knows which component that is. In cases where one or
both of these are untrue (either because Foo has been

6Based on a wide variety of evidence, including corpora; see Section 5.
7There is some debate as to whether presupposition is a matter of literal
semantics or pragmatics [144, §2.3.1], but pragmatics are generally agreed
to play a major role.

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Colin S. Gordon

removed and the comment is not out of date, or be-
cause the reader is a new team member) the meaning
is unclear, or effectively undefined, due to presupposi-
tion failure. Similarly, a classic style of example is to
note that the statement “I found my third major bug
for the day” presupposes the existence of two other
major bugs found earlier in the day.

• Scalar Implicature: If a developer writes that using a
certain library is “acceptable,” this implicates that the
use of the library is not better than merely acceptable,
because the author could have used a stronger descrip-
tor (e.g., “good,” “great”) but chose not to in order to
avoid saying something they believed to be false.

These are demonstrative examples of pragmatic phenomena.
It is well-established in the software engineering litera-

ture that concerns beyond mere program correctness factor
into choices about how to structure programs [20], comment
code [137, 173], or even choose identifiers [51], notably a fo-
cus on ensuring others can understand the code. While code
is constrained by its primary function (to be executable), as
is often noted these practices double the purpose to commu-
nicate with humans as well, in a way similar to what prag-
matics studies: more is (or at least, can be) communicated by
a piece of code than its mere functionality, just as more can
be communicated by an utterance than its literal denotation.

Pragmatics also carries some more concrete connections.

Wording in Human Surveys. Awareness of pragmatics
is particularly relevant to study design involving human
participants. An infamous experiment in behavioral econom-
ics [181] has been used to claim that people do not under-
stand conjunctions, specifically that they do not understand
that given two sets 𝑋 ⊆ 𝑌 and a random point 𝑝 , the prob-
ability of 𝑝 ∈ 𝑌 is larger than the probability of 𝑝 ∈ 𝑋 ,
seemingly misunderstanding that the latter implies the for-
mer. Of course, the wording used to ask the question is highly
relevant, and in the case of the original study, key. A core
pragmatic principle is that if someone (e.g., an experimenter)
says something that does not quite make sense, then they
must in fact mean something slightly different. In the case
of this result, the question posed is an example of a Hurford
disjunction [90]: a disjunction that is infelicitous because one
disjunct implies the other. Logically there is no issue here,
but if you were asked whether, given the knowledge that
Erin liked Python’s decorator feature, it was more likely that
Erin was a Python programmer or a programmer, you would
notice that the question is a bit “off.” Obviously the set of all
programmers contains the set of Python programmers, so
surely your interrogator intended something more nuanced
— otherwise it would be a silly question to ask. Perhaps it was
intened to ask if it was more likely Erin was a Python pro-
grammer or some other kind of non-Python programmer?

In that case one might reason that Erin is clearly a program-
mer, and because of their interest in Python decorators, more
likely a Python programmer than a non-Python programmer.

Of course, the reasonableness of that conclusion depends
critically on the inference that what the questioner meant
was not the silly question that was literally posed.

In the case of this infamous behavioral economics result
however, the questioner-intended meaning was the most
literal one, where of course Pr(𝑌) ≥ Pr(𝑋) when 𝑋 ⊆ 𝑌 .
But the survey instrument was flawed, because most people
will draw inferences like the above when answering [63].
Later work showed that improving the wording or allowing
consultation reduces the number of people choosing the
“wrong” answer [29, 121], but the effect remains because
fundamentally, the situation posed by any rewording of the
question remains a Hurford disjunction at its core.

Clearly, we can see the relevance of Hurford disjunctions
to survey design in PL and SE research: accidentally posing
questions of that form would be confusing to participants,
and would likely not measure the intended phenomenon.
But of course, this is just one prominent example. Any of the
pragmatic phenomenamentioned earlier (or those we did not
mention [89]) could lead to similar misunderstandings. In
areas where we spend much of our time dealing with strictly
logical interpretations of text, it’s essential to remember that
there is more to natural language than the narrowest logical
interpretation, and there is more structure to that gap than
mere ambiguity. Awareness of specific pragmatic phenom-
ena (specific to the human language at hand!) can help us
avoid confusing participants, and improve the chances of
measuring what we intend.

Interpreting English Specifications. Closer to home,
pragmatic implicatures involving time seem to be at play
in some observed experimental results in human studies in
formal methods. Greenman et al. [69] describe a series of ex-
periments analyzing the mistakes made by both novices and
experts in translating English behavioral descriptions into
Linear Temporal Logic (LTL) [142]. Two of the interesting
categories of mistakes made (by both novices and experts)
in that setting were leaving off a global “always” modality
surrounding the LTL translation, and missing “eventually”
or “next” modalities in the middle of formulae. These mis-
takes significantly change the meanings of formulae. LTL
specifications are formulae which are evaluated with regard
to a sequence of program states or events for a particular
execution. The main specification formula is evaluated in the
first state, and talking about later states requires using modal
operators. So, for example, leaving off a “next” modality, and
writing 𝜙 instead of ⃝𝜙 (to indicate 𝜙 should be true in the
immediately following state) means talking about what is
true at the wrong moment in time.

The Linguistics of Programming Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

The former appears related to the concept of generic sen-
tences, or more precisely the subset also called habitual sen-
tences, which describe recurring states of affairs.8 An LTL
formula such as 𝜙 ⇒ 𝜓 (𝜙 being true implies 𝜓 ’s truth, a
common form to formulae with this mistake in the experi-
ments) indicates that if 𝜙 is true right now (at the moment
of formula evaluation), then𝜓 is true at the same moment.
However, most LTL formulae with such shapes occur under
an always-modality, e.g., □(𝜙 ⇒ 𝜓), which intuitively says
that it is always the case that𝜓 is true when 𝜙 is true, at the
current moment and all future moments. A sentence such as
“If the train is arriving its warning lights are on” has readings
of both forms — with and without the modal. In normal natu-
ral language contexts, most English speakers will interpret it
with the habitual reading, as that is the most likely intended
meaning. However in teaching students to use formal logic
we tend to teach students to suppress inferences of things not
explicitly present in the text, and indeed there is no explicit
marker of habitual aspect in this example sentence (such as
preceding the sentence with “always” or “generally”). How-
ever, the intended interpretation here expects participants
to formalize this inference which is not explicit in the text;
learners of LTL therefore must learn that in this domain this
implicature should be carried over explicitly from natural
contexts to formal contexts.
This is not the only example in their study results. An-

other classic example of temporal implicature is given by the
classic linguistics example “I climbed on my horse and rode
off into the sunset.” The word “and” here is normally prag-
matically enriched by most who read it to mean the speaker
first climbed onto the horse, and immediately after that rode
of into the sunset (on the horse, rather than in a dune buggy).
This implicature is frequently explained in linguistics texts
as the “and then” interpretation. This also occurs in examples
in Greeman et al.’s study. In the coded responses, a number of
the responses reflect a possible assumption by the participant
that the formal “and” or “implies” implicitly shift the right
operand later in time than the execution fragment where the
left operand holds, such as responses including terms such
as Engine ⇒ □(¬Engine), which is trivially false because
the always modality’s argument is evaluated in the same
state as the hypothesis of the conditional — it literally means
that if the engine light is on now, then both right now and
forever after the light is off. This was likely intended to be
what we would actually write as Engine ⇒ ⃝□(¬Engine)
(i.e., if the engine light is on now, then starting in the next
state (⃝) the light is off from that point onwards). This is a
slightly different kind of error from the above, where intead
of neglecting to formalize an expected pragmatic enrichment,
the participants assumed the formal logical expression was
subject to further pragmatic enrichment.

8Generic sentences are broader, including other non-temporal generaliza-
tions such as the popular “tigers have stripes” and “birds fly” examples.

Thus pragmatics seems to fully explain some commonmis-
takes, and appears to be a contributing factor to others. This
makes it relevant to both understanding the mistakes, and
considerations for design of new specification languages.

3.2 Language Acquisition and the Learning and
Design of Programming Languages

Pragmatics is not the only linguistics topic of relevance to
human factors. Linguistics underwent a major shift in the
early-to-mid 20th century towards the science of language
learning [128]. This body of work collaborating with neuro-
scientists and psychologists resulted in voluminous knowl-
edge about how to teach a second language, and how to
teach subsequent new languages (which, it turns out, have
important differences from acquisition of first and second
languages [11, 59, 151, 186]). Critically, this body of work
offers models of language acquisition that predict stages of
acquisition and common mistakes at different stages.
It is now well-established [145] (and has long been sus-

pected [154] and studied [108]) that natural language apti-
tude is a significant predictor of success in learning to pro-
gram. Thus it seems natural to explore the adoption of nat-
ural language teaching techniques into how programming
in general, or even for specific language features, is taught.
Work on programming education appears to have indepen-
dently discovered echoes of results from the teaching of
natural languages, whose literature could have been at least
anticipated some of these results based on accepted mod-
els of acquisition. This strongly suggests that the existing
linguistics literature could also be the source of inspiration,
guidance, hypotheses, evaluations, and other criteria directly
useful to work on programming education and learning of
new programming languages. This idea, broadly construed,
is not a new idea: Robertson and Lee [150] suggested this 30
years ago, though left the suggestion as a broad recommenda-
tion to emphasize considering several broad themes of import
(in 1995) to second language teaching, most of which were
not explained in sufficient detail to act on. Here we try to give
more specific guidance about parallels and relationships.
Language acquisition is the area of linguistics (overlap-

ping with psychology and other cognitive sciences) focused
on how humans learn natural languages. As we will explore,
much of this work seems highly relevant to the learning
of programming languages as well. In this domain, a per-
son’s first language is often short-handed as their L1, their
second language as L2, and so on, generalized as L𝑛. While
this phrasing assumes a linear order to language learning,
variants cover cases such as a simultaneous L1/L2 for people
who are raised bilingual (and simultaneous L1/L2/L3, and
further, are also possible).
It is not clear whether the first programming language

learned is closer to first language acquisition or second lan-
guage acquisition (or later acquisition, for novice program-
mers who are already bilingual or multilingual when they

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Colin S. Gordon

learn their first programming language), or really in between
(with unique features to the learning of programming), but
there are clear parallels after the first programming language.
It is common knowledge (common belief) among computer
scientists that once you know a certain programming lan-
guage, it is usually easiest to learn new languages in the same
family (e.g., another dynamically-typed object-oriented lan-
guage, or another statically typed functional programming
language), and bridging to different language families is more
difficult — students have an easier time transitioning from
Java to C# than from Java to Racket. This mirrors findings
among families of natural languages [151].

We will focus somewhat more narrowly on the problems
of what makes specific programming languages or features
easier or harder to learn, more or less intuitive. Much work
has been done in this space [17, 19, 76, 97, 104, 115, 131, 157–
159, 172, 180], though we are unaware of direct application
of ideas from natural language acquisition to the acquisition
of programming languages (though language acquisition
work is not fully disjoint from the broader learning sciences).
Some of claims that have drawn the most attention in this
space are based on studies with clear analogues to natu-
ral language scenarios which highlight confounding factors
known to be highly problematic in similar linguistics studies;
or yield results which are analogues of known results in lin-
guistics. In the former cases, familiarity with linguistics work
on language acquisition would suggest relevant confounds
which could be controlled for. In the latter case, the studies
remain worth carrying out for confirmation (natural and pro-
gramming languages do have differences!), but awareness
of results in language acquisition changes the perspective
on what the anticipated outcomes should be — explaining
why at least one seemingly controversial paper’s results are
actually quite natural, given that the experiment does not
seem to be testing what was intended.

In what follows, we focus heavily on the learning of syn-
tax. Naturally we wish for our students to understand more
than the syntax of programs in a given language, but also
general computational concepts that are not directly con-
nected to language — what a program denotes. But an easy-
to-overlook aspect of human language acquisition is that
some baseline amount of syntax must be learned before lan-
guage meaning can be addressed [141] (there needs to be
a language fragment whose meaning can be learned!). It
is well-known both anecdotally and scientifically, that the
need to learn syntax is not only a major major barrier to
novices learning programming languages, but also the first
encountered [42, 43, 80, 172, 175], leading to work on lan-
guages specifically designed to account for this [80, 81] and
pedagogical consideration of languages that seem to have
less complex syntax for basic programs (notably Scheme and
dialects [22, 23, 52, 53, 55, 56, 104, 148], though other aspects
of the language’s semantics and amenability to metapro-
gramming play a role in those explorations as well). Existing

results in applied linguistics predict or explain some of the
more surprising findings.

Static Typing. In a paper that drew significant atten-
tion at the time, Hanenberg [76] carried out a study which
showed no improvement in outcomes for 49 students using a
typed dialect of a new programming language, compared to
a group using an untyped dialect. Students using the typed
variant took slightly longer to get a working (executable, not
necessarily finished) parser (the goal project). The quality
(number of bugs) between the typed and untyped groups
was similar. However, Hanenberg’s students were still novice
programmers, drawn from a pool that had completed a single
Java course. The students were given a tutorial on the typed
or untyped variant of the new language, then given 27 hours
to implement a parser. This experiment was taken as a failure
of static typing to provide benefits.9 We will discuss how
work on natural language acquisition predicts this outcome,
and moreover provides an explanatory mechanism for this
outcome (thus should be used to guide future experiments
with similar goals).

Consider the analogous natural language setup: a group
of students whose only working language is German are
asked to write small passages in either English or French
after a short tutorial. Why is this analogous? German is
a language with 3 grammatical genders, where nouns are
declined differently for every case, each roughly akin to a
kind of typing of referents (so roughly, Java, or according to
[130], Rust). English and French both have similar word order
to German (for basic sentences, all three admit SVO word
order). All three languages require agreement in number
(singular vs plural) between verbs and subjects. However
the English case and declension system is greatly simplified
compared to German: English has no grammatical gender,
and aside from pronouns, nouns are typically not declined
according to case. French has only 2 grammatical genders,
and like German requires adjectives to agree with nouns in
gender and number. English and French themselves have
very similar word order.10

In this case, essentially all major theories of second (L2) [160,
182] and further (L3/L𝑛) [59, 151] acquisition predict that
the initial mental model for a new language is either the full
syntax of a known language, or at least defaults to reusing
syntactic assumptions of known languages. In the parallel
natural language setting above, we would expect L1 German
students just learning English or French to produce English
or French with similar sentence structure to correspondingly
simple German sentences. We would not expect the students
to produce English sentences any more quickly than they

9Note, however, that this was not the end of this line of research.
10For example, both tend to collect verbs together, as in “I want to read
the book” or “Je veux lire le livre,” contrasted with German’s movement
of non-primary verbs to the end of the sentence, as in “Ich will das Buch
lesen.”

The Linguistics of Programming Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

would French sentences, because they would essentially still
be mentally working in German. For learning a second
programming language after learning a typed language as
the first, applying any theories of natural language acquisi-
tion would predict that novice learners of the new language
would continue to structure their code in a type-based way,
even without type-checking feedback, because those are the
starting mental structures that are available.

So in effect, Hanenberg’s experiment did not test whether
there are benefits to static typing, because all participants
were effectively adhering to the same syntactic criteria. In-
stead the experiment tested whether students who knew
only Java11 would initially continue to write Java-like code
in a new OO language even without a the demands of a type
checker; nothing in the experimental setup would suggest
the students were informed of the relaxed syntactic con-
straints of the dynamically-typed language, or ways to take
advantage of the relaxed syntactic constraints. Even if they
were, short instruction and limited practice are not enough
to change the default mental structurs fluently. So as novices,
they most likely did what natural language learners do ini-
tially: early-stage learners, when a target language permits
grammatical constructions familiar from a known language,
tend to closely follow the familiar structures valid in both
one or more known languages [151, 186]. This is a familiar
experience for those of us who remember the early stages of
learning a second, third, or further natural language.
From that point Hanenberg’s results make perfect sense.

Both groups have similar error rates because they’re effec-
tively trying to write the same code, in the same intended
grammar, regardless of which experimental group they were
put in. This critique was raised intuitively by researchers
around the time the study was published, but essentially
based on “gut feeling.” This concern turns out to actually
have backing in the linguistics literature.
This also explains why the typed group took longer on

average to complete: both groups were trying to write the
same code, but only the typed group was told (by the type-
checker) when they deviated from their intent and was then
forced to correct things. (Interrupting a non-native speaker
to get them to correct grammatical mistakes slows their com-
munication by virtue of interrupting them.)

A computer scientist may object at this point: surely the ex-
perimental language variants had a parser, and both groups
received parser errors! So how is static type checking re-
lated to syntax? It is true that there was a parser for both
language fragments, but the assumption that type checking
is not about syntax neglects that programming language
implementations typically take a narrower view of syntax
than formal language theory, treating anything beyond an
𝐿𝑅(𝑘) grammar for small 𝑘 as “semantic analysis” in the

11With the possible exception of some students with prior programming
experience.

parlance of influential compiler texts. But of course, many of
those “non-parsing” tasks are categorized that way because
they are not efficient to implement in classical CFG-based
parsing frameworks. However, as we discuss in Section 6,
properties such as identifier scoping and even simple typing
are problems in the domain of context-sensitive languages,
not much beyond the class of mildly-context-sensitive lan-
guages that seems to bound human languages [21, 86, 166].
And particularly for novices, both classes of feedback appear
as “shapes of code that are allowed or disallowed.”

The point here is that decades of research on language in-
struction predict aspects of Hanenberg’s results. Still, while
the linguistics literature predicts that this experimental setup
would not measure what was intended, this extrapolation we
have just described does not automatically hold true — the
experiment is still valuable because it provides a confirmed
instance of an experiment in programming language acqui-
sition behaving as predicted by natural language acquisition
research, suggesting that other predictions from extrapo-
lation of language acquisition work are worth specifically
considering and checking. However, the analogy to the lin-
guistic context does change the framing of the experiment:
it makes Hanenberg’s findings the expected results given the
experimental setup.

Many of the ideas from the linguistics literature that pre-
dict these outcomes are from the 1990s and early 2000s,
though much of the specific evidence we are aware of, cited
above, stems from notable increase in L3 acquisition work
from roughtly 2015 onwards; thus we do not believe the re-
sults were necessarily obvious extrapolations from what was
known at the time of the study. However, given the connec-
tions described above, it seems likely that researchers pursu-
ing empirical studies on syntax in particular, and learning
of programming languages in general, would benefit from
examining analogous natural language acquisition settings
when designing experiments and framing results.

Intuitiveness of Syntax. Another appealing measure
of a programming language design besides productivity is
whether or not the structure of the language is intuitive, as
fuzzy a notion as that is. Our colleagues in design and HCI
deal with this notion themselves, and it is worth remember-
ing that what counts as intuitive depends heavily on past
experience and recent use, and can thus vary widely across
individuals. This is another place where decades of linguists’
experiences investigating the factors that make language
acquisition easier or harder has strong relevance.
Much of the current literature on learning the syntax of

programming languages (as typically understood in com-
puter science, excluding type systems) also presents findings
as surprising which are arguably predicted by linguistics
work on language acquisition. Monolingual learners of a
second language (L2) initially transfer expectations about

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Colin S. Gordon

syntax and lexical entries (words) from their one known lan-
guage [61]. Bilingual or multilingual learners of an additional
(3rd or later, L3/L𝑛) transfer grammatical expectations from
at least one known language, with strong evidence in favor of
mixed transfer frommultiple known languages [11, 151, 186],
and additional evidence in favor of transfer specifically from
the most typologically (structurally) similar language. Mul-
tilingual learners who use one language significantly more
than others are additionally more likely to transfer from their
dominant language [146], though it remains unresolved how
this tendency is balanced against closer similarity between
a non-dominant known language and the target language.
Critically, in any case, which language(s) a learner already
knows, and even the order in which they were learned [11]
and relative proficiency levels [161] has influence on the
initial learning process for any new language.
Adapting this framing to consider what programming

language syntax true programming novices would consider
easiest to learn yields some natural expectations. Monolin-
gual novices (with no programming experience) would likely
consider programming language syntax with grammar and
lexical entries (keywords) closest to their known language
more intuitive, because they could transfer more expecta-
tions from their original language without error. Bilingual
or multilingual novice learners (with no programming ex-
perience) who predominantly use one language would find
programming language with grammar and lexical entries
more similar to their dominant language to be more intuitive.
Adapting this to learners who have some prior program-

ming experience naturally becomes more muddled, as it is
clear that programming languages have significant differ-
ences from natural language (e.g., compilers and interpreters
do not engage in pragmatic implicature), but they are still
languages with lexical entries and grammatical structures
which can be transferred. Theories of L3/L𝑛 acquisition con-
sistently assume most if not all transfer will be from either
the most dominant language or the most typologically (struc-
turally) similar language [151, 186], but for learning a second
programming language, it seems reasonable that learners
would be more likely to transfer from their known program-
ming language than from one of their natural languages.
So we can make reasonable extrapolations for learner who
may be monolingual or multilingual with regards to natu-
ral language, but have basic familiarity with (exactly) one
programming language: most (or all) initial transfer would
come from the (one) known programming language.
For learners who have already gained significant experi-

ence with multiple programming languages, it seems rea-
sonable to project based on interpreting L3/L𝑛 theories of
acquisition with regard to known programming languages.
In this case, programming languages with grammar and
lexical entries (keywords) more similar to known languages
would bemore intuitive, with programming languages where

those features most resemble the learner’s most-used (domi-
nant) programming language being even more intuitive due
to greater opportunity for correct transfer from the most
familiar context.
In light of this, let us consider a study from Stefik and

Siebert [172], widely noted for finding that Java and Perl’s
syntaxes were not significantly more intuitive to novices
than a language with randomly-chosen keywords, while
Ruby, Python, and Quorum (a language designed by those
authors and collaborators to have more English-like syntax)
were deemed more intuitive based on novices’ accuracy in
intuiting small programs based on examples in one of the
languages. These were the take-aways from only two of the
paper’s experiments (Studies 3 and 4); two other experiments
(Studies 1 and 2) asked either first-year CS students or later-
stage students to subjectively rate how intuitive the syntaxes
of various programming languages were. A common critique
of this paper (more precisely of Studies 1 and 2 in the paper)
is that what is intuitive is highly subjective, and depends
on prior exposure to related ideas. This is a natural obser-
vation which is acknowledged in broad terms as a possible
confounding factor by Stefik and Siebert. Stefik and Siebert’s
accuracy evaluation (Studies 3 and 4) does directly address
this, by asking non-programmers to write a specified small
program based on an example in one of the experimental
languages (each participant was only shown examples in a
single language), and evaluating how close the responses
were to an intended program. A subset of the (extensive)
findings addressed that early students in Studies 1 and 2
generally preferred English keywords to punctuation, with
the partial exception of preferring a single equals sign for
equality comparisons, and that non-programmers had higher
error rates with Perl, Java, and a language with randomly
generated keywords than with Ruby, Python, or the Quorum
language designed by the authors and others (the study is
infamous in part because the mean accuracy for participants
in the Java group for Study 4 was only marginally better than
the random-keyword language). These results are valuable,
but presented as at least somewhat surprising. We would
argue that these aspects of the results are actually antici-
pated by extrapolating language acquisition research results
to programming languages. (Though again, this experiment
was worth performing to confirm that the programming
language case behaves consistently with knowledge about
natural languages.)

A general trend in Stefik and Siebert’s results was that Eng-
lish keywords were favored over punctuation by novices, and
languages that make heavier use of punctuation for operators
had lower accuracy for non-programmers. This is at least
partly explained by the lack of transfer of lexical handling
from natural languages and limited transfer from some pro-
gramming languages for punctuation. In natural languages,
punctuation is primarly a marker used for grammatical guid-
ance (such as nesting appositives in parentheses) or prosody

The Linguistics of Programming Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

(e.g., pauses), and is not meaning-bearing.12 But of course, ++
and similar operators in imperative programming languages
aremeaning-bearing! So this is loosely akin to learning a lan-
guage using a different script,13 which is known to introduce
additional difficulties in language acquisition [5, 13, 125].

Beyond predicting this trend, the linguistics literature sug-
gests refinements to the participant groupings for Studies
1 and 2 (of novice and experienced CS students). As noted
above, which language(s) a learner already knows when
learning a new language has a significant impact on many
aspects of learning [11, 98, 151, 186]. Stefik and Siebert de-
scribe their subjects for Studies 1 and 2 as “from a variety
of courses in the computer science department, including
freshman through junior and senior level courses that are
taught in a variety of languages (e.g., C++, Java)” [172]. Their
background surveys cover 13 and 15 languages (for their
syntax experiments), covering quite a few different program-
ming language families. So while the varied experience levels
(years in the CS program) were controlled for by separating
the groups, varied background (exposure to various subsets
of programming languages prior to the study, presumably
learned in varying orders), and unknowns regarding par-
ticipants’ dominant programming languages, treating this
breadth of subjects in a single pool seems to be a more likely
confounding factor.

This suggests likely follow-up studies to tease apart these
subpopulations with refined experimental design. Natural
language acquisition studies typically select target popula-
tions to specifically control for these factors, gathering par-
ticipants with specific amounts of experience, and pairing
populations. For example, rather than simply asking about
the intuitiveness of a certain language syntax from a broad
pool, selecting groups of L1-Python/L2-Java participants, L1-
Java/L2-Python participants (with appropriate criteria for
what counts as an L1 or L2 programming language), and in-
vestigating those participants’ views of a range of syntaxes.
Critically, the languages whose syntaxes were polled should
not overlap the set of known languages, though this is likely
harder to achieve in participant recruiting for programming
languages than with natural languages (and notably, cannot
be done solely with participants from a single academic insti-
tution in most cases, unless there are multiple introductory
sequences with opposing orders). Even better would be to
additionally compare to L1-Python and L1-Java learners who
knew nothing of the other language (e.g., L1-Python with
no Java exposure and vice versa).
Language acquisition work also highlights an important

understated limitation to the study, which was the exclusive
use of participants with high English proficiency. The paper

12Hermans [81] shares an amusing anecdote of a student pausing mid-
sentence when reading aloud an error message involving a comma, rather
than naming the comma.
13We avoid the word alphabet because not all languages use an alphabet,
e.g., Mandarin and Japanese.

notes that only 2 out of 196 participants in Study 1 (just over
1%), and 7 of 166 participants in Study 2 (just over 4%) were
non-native English speakers, meaning almost 99% and 96%
respectively were native English speakers. The study was
conducted at a US university, all of which require strong
scores on English proficiency exams for international stu-
dents whose home country’s official language is not English.
Numbers are not reported for Studies 3 and 4. So the study
results are, at best, true only for high-proficiency English
speakers; students whose primary language was not Eng-
lish may have found different syntaxes more intuitive than
this group, based both on linguistics results and more re-
cently on experiences with Hedy, with the notable example
of supporting right-to-left syntax for users whose dominant
language is right-to-left [175]. This is especially relevant for
low-proficiency English users [72].

Again, we must conclude that familiarity with the science
of how people learn natural languages is highly relevant to
studies of learning programming languages.

3.3 Other Linguistic Human Factors
Many other human factors aspects of program development
would benefit from linguistics knowledge. On the language
use side, we focused on subtleties of the communication
via an individual utterance in some abstract notion of a us-
age context. However, the linguistics literature goes much
deeper, and considers other aspects of communication as
well. Discourse analysis is the study of how longer language
exchanges — notably interactions— are structured. In Section
5 we discuss this in more detail in the context of analyzing
developer communications, but it also seems relevant to the
design of interactions with tools. On the language learning
side, there is a rich literature on individual differences in learn-
ing, connected to this term in the broader field of learning
science and its particular intersection with linguistics, going
well beyond some of the high-level mention in this section of
factors like which specific languages a learner already knew,
and what order they were learned in. One example with a
clear analogue to programming languages is that extramural
use of a language (i.e., use outside the classroom and assign-
ments) has a significant impact on gaining proficiency [174];
this connects to student use of a particular programming
language in hobby projects, hackathons, and jobs. Given that
most of our programming languages, tools, and knowledge
repositories emphasize the textual form, knowledge of how
humans interact with natural language seems worthwhile.

4 Evolution of Language Design and Use
Let us now shift our perspective slightly, from the focus on in-
dividual humans thinking about programs to the languages
themselves, but still considering that humans as a group
play a role in the design of programming languages. There
is a question of to what degree programming languages

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Colin S. Gordon

are designed vs. evolve. Unquestionably, programming lan-
guages are designed and engineered in ways that human
languages (with the exception of conlangs [64]14) are not.
Some authors [77, 171] have critiqued the design process of
programming languages for not basing every evolution on
controlled trials showing benefits.15 However, even setting
aside the narrow epistemology of expecting every language
change to bring widespread obvious benefits to all users
while language designers acknowledge adding features use-
ful in narrow but high-value cases (Gibbons [62] points to
other flaws in this thinking), the choice of language feature
inclusion has always been as much a social process as a tech-
nical one. Anyone who has been involved with a language
standardization effort, or even a proposal for a language en-
hancement, will readily admit that usually the social case
must be made before technical feasibility is even considered.
A linguistics area of relevance is the study of language

contact and change [85], which studies how different lan-
guages change when used simultaneously by the same peo-
ple. An analagous situation arises in the creation of software:
a plurality, if not a majority, of developers work with mul-
tiple programming languages, and naturally habits from one
language tend to carry over to others (see earlier discus-
sion on language acquisition), sometimes leading to growing
demand for new language features and thus to language
extensions, either officially or via libraries or metaprogram-
ming. Examples of this can been seen in the gradual spread
of asynchronous programming constructs like async-await
spreading across established languages (e.g., from research
languages [122] to niche production languages like F# [176]
to mainstream languages like C# [15], and JavaScript [114]),
or type classes (popularized by Haskell [74] before spreading
to Scala [132] and Rust). At a minimum developers working
across different languages are known to result in code writ-
ten in one language (e.g., Python) in a style more typical of
another (e.g., Java) — non-idiomatic code. Such code may be
more difficult to understand (or less efficient to execute) than
idiomatic code, leading to existing efforts to automatically
normalize non-idiomatic code [188–190].
Two major ways programming languages evolve are by

borrowing features from other languages and by developing
shorthands for expressing common idioms that were origi-
nally more verbose. It turns out, these are also the two major
ways that human languages evolve:

• Languages in regular contact [85] (in the sense of hav-
ing a large number of multilinguals working in that
particular combination of languages) tend to absorb
features either by intentional mimicry (loanwords and

14Constructed languages, which are mostly languages designed for hobby
purposes, though occasionally for books or cinema.
15Though we also note they do not demand the same evidence for li-
brary evolution, despite many libraries acting as embedded domain-specific
languages.

borrowing phrases across languages [143]) or acciden-
tal cross-pollination (when non-native speakers en-
counter an idea they wish to communicate but lack the
lexical or grammatical knowledge to express it in the
target language, they often fall back tomixing in lexical
entries or grammatical structures from a more domi-
nant known language [153]), which sometimes stick.

• Idioms and additional meanings develop via a variety
of methods, but most prominently via gradual merg-
ing of words and dropping of portions [103]. Linguists
believe this is a natural mechanism to optimize com-
municative efficiency.

We can see examples of human language transfer in action
even in our own scientific literature. For example, there are
examples throughout the literature of a grammatical con-
struction involving “to ⟨verb⟩” in places that native English
speakers deem it awkward, such as “to synthesize a type is
straightforward” rather than “synthesizing a type is straight-
forward.” These arise from work by authors whose primary
language lacks a direct equivalent of the English gerund (the
-ing ending). For example, the sentence above in German
would be either “einen Typ zu synthetisieren ist unkom-
pliziert” (the most parallel translation) where “zu synthe-
sisieren” translates word-by-word as “to synthesize” or “das
Synthetisieren eines Typs is uncompliziert” (literally, “the
synthesis of a type is straightforward). As this new form
proliferates, it is likely to eventually be accepted as typical
by native English speakers, used by them outside academic
contexts, and so on. Or consider that a common construc-
tion in linguistics text is to say that some construction or
analysis or interpretation “obtains.” The word “obtains” in
typical English requires a direct object that is the thing being
obtained, where the subject is the actor doing the obtaining;
linguists however use “X obtains” to mean that someone or
something managed to “obtain X.” For example, “the typing
derivation obtains” or “the analysis result obtains.”
We can see examples when developers attempt to carry

idioms from one programming language to another. Com-
plaints about such idioms seeming natural but either being
disallowed or performing poorly lead to language changes.
Consider Java finally acquiescing to add closures in 2014.

Many programming language changes are driven by sim-
ilar shorthanding mechanisms, such as the now-popular
addition of for-each loops to replace manually writing code
to retrieve and then loop through an iterator.
Other changes are a combination of both. Consider the

relatively recent addition of pattern matching switch state-
ments to Java. This is a feature that was common in other
related languages (C# and Scala as closest competitors in
the field, besides the decades of earlier examples) but were
added largely because it permitted more concise expression
of patterns that were already prevalent in Java code. The
documentation [133] explicitly motivates the use of every

The Linguistics of Programming Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

form of pattern matching as a more concise alternative to
common idioms.

These aspects of natural language evolution, and clear par-
allels in how programming languages do evolve in practice,
further suggest considering the common-sense position that
programming languages, like natural languages, are subject
to multiple constraints beyond learnability.

When it comes to studying change in usage over time, the
broad family of corpus linguistics techniques has relevance,
given the abundance of studies in how usage of language
features changes over time, via the intersection of historical
or diachronic linguistics (the study of language change over
time) with corpus linguistics [87].

5 Corpus Methods, for Programs and Text
About Them

Let us now shift our attention down another layer of detail,
to focus more squarely on linguistic textual data (whether
text about programs or the text of programs themselves)
and how to process it, through the lense of methodological
tools from linguistics with relevance to PL and SE. Corpus
linguistics offers many parallels with and lessons for PL and
SE research. One of its major domains of application has
been to the study of extended conversational texts, a topic
of perrenial interest in software engineering.

Corpus Linguistics and Empirical Studies. Empirical
studies have played a significant role in software engineer-
ing [10, 16, 18, 35], program analysis (of all varieties) [95,
129], and even the design of programming languages (the
classic value restriction for ML polymorphism was based
on a simple corpus study [187], and more recently adjust-
ments to Julia’s type system have been validated based on an
extensive study of public Julia code [14]). Likewise, empiri-
cal analyses of the relative frequency of various linguistic
phenomena has been a source of great knowledge for lin-
guists, and is roughly as old as software engineering, with
the practice emerging in earnest starting in the 1950s [120],
and solidly established by 1967 [105].16 The simplest form
of corpus linguistics studies relative frequencies of different
occurrences (e.g., of words (known as lexical variation), or
grammatical constructions [4]), which may (as in PL and
SE research) be either manually annotated or programmat-
ically identified. Another step in that direction concerns
the change in properties of corpora over time, which has
a long history in linguistics [87], and which programming
languages and software engineering researchers have rein-
vented alone to study phenomena such as the adoption pro-
cess of Java generics [136]. While our motivations for such
studies might differ from the motivations for studying the
16A determined proponent of linguistics could make a case that corpus
linguistics is in fact a couple millenia older than software engineering,
with early grammars of Sanskrit discussing relative frequency in written
literature of the time [96].

(once-contentious [25]) emergence of singular “you” to dis-
place “thou” in English, many of the same principles apply
to data gathering and analyses for these problems.
Much empirical work in SE and PL independently mo-

tivates separate techniques from corpus linguistics, based
on general statistical knowledge (e.g., a notion of seeking
a representative sample) and the particulars of the domain
and question at hand. While such results are valid when
well-executed [9], it seems highly unlikely that empirical
software engineering has already independently invented all
of the relevant insights used in another discipline that studies
relative frequencies of phenomena in largely-textual data.

Corpus linguists have spent decades focusing on the finer
points of obtaining reasonably representative samples and
dealing in principled ways with known skew in datasets,
including sampling across various subpopulations, and even
articulating how to determine when a group is a subpopu-
lation [47]. Indeed, there are examples of ways to examine
corpora that we have yet to see reflected in many empiri-
cal SE studies or nearly any PL studies.17 Most large-scale
empirical investigations in our fields are focused on frequen-
cies: how often a phenomenon of interest occurs, in any
context. The corpus linguistics literature suggests additional
views that would be of interest. Corpus linguistics has de-
veloped systematic approaches to studying various kinds
of co-occurrence of features of interest [170, 177]. For ex-
ample, one key technique beyond frequency is analysis of
collocations [57, 113]: alternatively either the frequency with
which two items of interest are adjacent or the examination
of which pairs (or trios, etc.) of items co-occur together fre-
quently. A natural SE application of this idea might be to
analyze which APIs are used together frequently (while not
necessarily being code clones), perhaps to identify candi-
dates for refactoring out common logic [28]. Linguists have
applied corpus linguistics techniques to study a range of
other problems with analogues in PL and SE discussed later.

Discourse Analysis. So far we discussed the connection
between ideas from corpus linguistics and analysis of soft-
ware code. Unsurprisingly, such ideas can also be applied
to natural language written about software or code, where
the lessons of linguistic corpus analysis become even more
relevant given the focus on natural language. In this case
software engineering researchers have already pursued some
forms of this, such as analyzing the linguistic structure of and
categorizing noun phrases in bug reports [101], with an eye
towards consequences. But software engineering research
has also explored corpora of bug reports [191], chat logs [32–
34], mailing lists [73], specifications [46, 149], and more.

At least some ideas from linguistic annotation of corpora
have made their way into software engineering work [6],
but there is more to be had.
17We are intentionally excluding here small-scale empirical investigations,
such as when a pluggable type system is run on a small number of programs.

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Colin S. Gordon

Linguists have also studied many of the same topics whose
corpora are studied now in software engineering, though in
broader contexts under the broad area of discourse analysis:
the study of how meaning is conveyed across larger pieces
of text (think software requirements) and interactions/dia-
logue (think developer chats and mailing lists). This includes
study of both various forms of communication (e.g., chat mes-
sages [1], email [36, 39], contracts [68]) and cross-cutting
aspects of communication such as how emoji [45, 118, 155]
and humor [88] are deployed, and howwork relationships be-
tween participants influence these interactions [75, 88, 140].
This work covers a wide range of phenomena in written
artifacts which would seem to have relevance to software en-
gineering analyses, and incorporates a variety of techniques
and theories drawn from other areas of linguistics (notably
sociolinguistics). Much of the relevant work is under the
heading of computer-mediated communication or computer-
mediated discourse analysis [83, 84], including work studying
the choice of which communication method to use [126, 127].
And these are not merely case studies, but proposals for ways
to systematically understand unique aspects of these forms
of communication. For example, there is extensive work on
disrupted adjacency [60, 82], where multiple threads of con-
versation are interleaved in chat or email contexts, which
has been tackled in SE [31, 48] (note that the state-of-the-art
in doing this for developer chats [31] is directly derived from
techniques drawing on discourse studies in linguistics [49]).
Note that we are not suggesting that any of the SE work

above is redundant; most discourse analysis work in lin-
guistics is focused on understanding reasons for behaviors
and factors in choices of behavior, and how information is
communicated. Much (though not all) lacks proposals for
algorithms to extract or reconstruct relevant views of infor-
mation, and we are unaware of any that applies that knowl-
edge directly to software engineering contexts. But it seems
likely, given the overlapping interests of the communities,
that there is opportunity for discourse studies to suggest
approaches or explanations, or contextualize results, in ways
complementary to existing SE work.

6 Analysis of Program Text
Finally, let us shift our focus down a few more notches. We
have discussed high-level human factors, mid-level questions
of how humans influence the evolution of languages, and
research techniques. Let us now discuss specific technical
tools from linguistics with direct relevance to programming
language design and implementation. When designing and
implementing programming languages, we spend a great
deal of time dealing with the definition, modeling, and anal-
ysis of the syntax and semantics of programming languages.
Again, linguists have decades of experience doing the same
for natural languages, and have come from such a different

perspective that they have concrete solutions to challenges
PL and SE researchers are actively working on.

Syntax and Grammar. Practically every undergraduate
computer science program, and most software engineering
programs, require their students to take a course on for-
mal language theory, focusing on finite state machines and
automata, context-free grammars and pushdown automata,
and Turing machines. Often lost in the shuffle is that these
ideas arose originally out of linguistic investigations of the
complexity of natural language syntax; the gradation of com-
plexity between regular, context-free, context-sensitive, and
recursive languages is called the Chomsky Hierarchy be-
cause Chomsky (a linguist) was the one who articulated the
gradation [37]. These courses tend to gloss over the context-
sensitive languages because their grammatical characteri-
zation is slightly awkward, and computationally the notion
of a linear-bounded automaton looks like an artificially lim-
ited Turing machine — why bother bounding the tape? This
conflation however has, we believe, limited the imagination
of language designers, even as colleagues in computational
linguistics explore grammatical formalisms with additional
power and tractable parsing [93, 106, 107].
Consider that nearly every example of a language mod-

eled on a Turing machine in popular automata theory texts
— 𝑎𝑛𝑏𝑛𝑐𝑛 , 𝑎𝑛𝑏𝑚𝑐𝑛𝑑𝑚 , {𝑤𝑤 | 𝑤 ∈ Σ∗}, and more — are in fact
context-sensitive(!), and use only linearly-bounded amounts
of tape. This conflation seems, anecdotally, to lead to a con-
fusion that anything beyond context-free languages is hope-
lessly intractable, and that all programming language syn-
tax is inherently context-free, when in fact the distinction
between syntax and semantics is somewhat subjective. Con-
sider the problem of checking that a program identifier is in
scope. Typical language implementations parse a program
using a context-free grammar that ignores scoping, then per-
form a series of analysis passes over that parse tree to check
properties like scoping and typing. We have seen preprints of
published machine learning papers (later corrected in press)
which initially indicated surprise that context-free gram-
mars were insufficient to avoid generating programs with
ill-scoped identifier uses, even though identifier scoping is
inherently a context-sensitive property, for the same reason
XML is a context-sensitive language: the set of identifiers (or
XML tag names) is not finite, so well-scoped programs / valid
XML documents cannot be captured by a finite set of context-
free production rules.18 In fact, the form that scope checking
takes — a recursive walk over a tree where identifiers are
typically expected to be declared in higher/earlier nodes of
a parse tree — can be modeled as a non-deterministic push-
down tree automaton; the yield languages of such automata

18 Note that even matching a single pair of opening and closing XML
tags requires matching the tag name in order — just validating that
<mytag></mytag> has matching tags without hard-coding mytag in the
grammar is non-context-free, a cousin of {𝑤𝑤 | 𝑤 ∈ Σ∗}.

The Linguistics of Programming Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

(the in-order serialization of leaf nodes of accepted trees) are
exactly the context-sensitive languages [156]. (This is why
identifier scoping, and even type-checking for type systems
without type-level computations, are in fact context-sensitive
language problems, though they are typically implemented
in terms of trees rather than strings.)

In short, context-sensitive syntax is plausible, and in fact
already used in any statically-typed language, just formal-
ized implicitly as the intersection of a context-free grammar
and a pushdown tree grammar, an idea that has now arisen
for other purposes in PL [3]. There is strong evidence that
many human languages are not context-free [21, 86, 166]
and lie in a restricted class of mildly context-sensitive gram-
mars [93]. For example, Higginbotham [86] gives a fragment
of English using gendered pronouns to demonstrate cross-
serial dependencies of grammatical agreement, much like
the cross-serial dependencies in Dutch [21] which inspire
the textbook non-context-free language 𝑎𝑛𝑏𝑚𝑐𝑛𝑑𝑚 . These
mildly context-sensitive gramamars can also be parsed effi-
ciently [93, 94, 106] — not as efficiently in the worst case as
context-free grammars of course, but efficiently enough that
such grammars are plausible (𝑂 (𝑛6) upper bounds rather
than 𝑂 (𝑛3)). In principle one could establish complexity re-
sults on various type-checking problems by connecting them
to the rich literature on tree automata and grammars, though
to the best of our knowledge this has not been explored.

A useful trend in linguistic grammars, as opposed to many
of the context-free grammars used in programming lan-
guages and software engineering, is the emphasis on lex-
icalized grammar formalizations. These formalizations shift
the emphasis from describing the abstract phrase types to
describing simply how individual words combine with ad-
jacent constructions. The result is that it becomes easier
to specify grammars modularly: adding a new grammat-
ical construction is “simply” a matter of giving a certain
grammatical “type” to a new word. In a world of language
workbenches [184], wouldn’t it be nice to mix andmatch syn-
tactic fragments modularly for experiments? In fact, there
are already papers where this has been necessary, such as
abstracting over the addition of new evaluation contexts for
parameterized studies of effect checking [117]. One could
also argue that work on metatheory a-la-carte [40, 41, 92]
does something similar when defining grammatical struc-
tures indirectly, for example by defining ASTs using an alge-
bra over partial Mendler encodings [99], though in that case
a final fixed tree structure is still computed (as a least fixed
point), so a full set of language (syntax) extensions must be
fixed at some point in time.
Lexicalized grammars remove this restriction. Consider,

rather than the classic CFG for arithmetic expressions:
𝑒 ::= 𝑛 | 𝑒 + 𝑒 | 𝑒 − 𝑒

a lexicalized version, using Lambek’s syntax [109] and a
couple general combinatory rules:

+ ⊢ (𝑒 \ 𝑒)/𝑒 − ⊢ (𝑒 \ 𝑒)/𝑒

𝑛 ⊢ 𝑒
𝑠 ⊢ 𝐴 𝑠′ ⊢ 𝐴 \ 𝐵

𝑠, 𝑠′ ⊢ 𝐵
⇐

𝑠 ⊢ 𝐵/𝐴 𝑠′ ⊢ 𝐴
𝑠, 𝑠′ ⊢ 𝐵

⇒

This is a presentation of the same grammar as a Lambek cal-
culus [109] with an additional unary rule to promote numer-
als to expressions. Plus and minus operators are each given
a grammatical category, in this case both slash categories
indicating they are syntactically directed functions. Each
takes an 𝑒 to its right, followed by an 𝑒 to its left, resulting in
an 𝑒 (in both cases, the slashes act as grammatical function
type constructors, and the argument is “under” the slash).
The first two lines describing the plus and minus oper-

ators are the lexicon, where each entry gives the assumed
grammatical role for various lexical items (here the opera-
tors). We explain the grammatical roles momentarily.19 The
rules above have conclusions of the form 𝑠 ⊢ 𝑐 , which we
can read as saying “the sequence of words 𝑠 can be parsed
as belonging to grammatical category 𝑐 . They are inference
rules of the form common in logic and type theory: to con-
clude the claim below the line, one must prove (using the
same set of rules) all claims above the line. 𝑠 , 𝐴, and 𝐵 are
variables ranging over (non-empty, but possibly singleton)
word sequences (𝑠) or grammatical categories (𝐴 and 𝐵).

The first rule above can be read as saying that any number
𝑛 is an expression (𝑒). The second rule (labelled ⇐) reads as
saying that for any two sequences 𝑠 and 𝑠′, if 𝑠 has grammat-
ical category 𝐴, and 𝑠′ has the grammatical category 𝐴 \ 𝐵
indicating that it would be a 𝐵 if an argument of category 𝐴
were placed to its left, then as long as 𝑠 is actually placed to
the left of 𝑠′, the two can combine into a fragment in gram-
matical category 𝐵. The final rule (⇒) is symmetric, with the
“function” category looking to its right for an argument, and
the fragment 𝑠′ on the right is the argument in this case.

This presentation is similar to writing a CFG in Chomsky
Normal Form, where all rules combining non-terminals are
binary. The rules are in fact logical rules of inference, and a
derivation is isomorphic to a (binary) parse tree (with leaves
at the top). Thus the categorial grammar equivalent of a
parse tree witnessing that 3*3 is an expression would be:

3 ⊢ 𝑒
∗ ⊢ (𝑒 \ 𝑒)/𝑒 3 ⊢ 𝑒

∗3 ⊢ 𝑒 \ 𝑒
⇒

3 ∗ 3 ⊢ 𝑒
⇐

Presenting the rules this way — lexicalized, with each rule
anchored to a piece of syntax — allows concise syntactic ad-
ditions, specifying new constructs simply by giving new lexi-
con entries like those given for + and−. Specifying multiplica-
tion and division in this way is not particularly enlightening,
19It is possible to extend what we describe here to deal with deriving lexicon
entries for derived word forms from their base forms.

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Colin S. Gordon

but one could add an additional base category 𝑏 (booleans),
give every comparison operator the category (𝑒 \𝑏)/𝑒 (look-
ing first to the right for an expression, then left for another
expression, resulting in a boolean expression), boolean oper-
ators (𝑏 \𝑏)/𝑏 (similar, where the arguments are boolean ex-
pressions), and continue building, without revisiting the com-
binatory rules. The presence of the slash categories removes
the need to name many intermediate categories, in exchange
for some familiarity with functional programming or sub-
structural logic. Parsing algorithms exist for this approach
which do not require additional compilation or grammar
transformation, making it suitable for use in language work-
benches or for language support for syntactic extensions.
Nothing in this approach forbids giving multiple lexical

entries for the same construct: try for example may have
distinct entries for whether or not a finally block follows.
Note that we ignore operator precedence here, but this (and
other syntactic extensions) can be modeled in this approach
as well. Lest this raise questions about how semantics might
be given to programs with syntax given in this way, we
discuss this next.

Semantics. “Formal semantics” in linguistics is the study
of formal models of meaning, including meanings that may
vary by context. Most approaches assign mathematical mean-
ings to parse trees of sentences (or larger texts) composition-
ally, composing the meanings of subtrees to produce the
meaning of a tree node much like denotational semantics
assigns meanings to abstract syntax trees.20 While many se-
mantic representations are used in linguistics (and especially
computational linguistics), it is generally agreed that any
semantic representation used should have a denotation in
terms of some formal logic, or a lambda calculus with a Heyt-
ing Algebra (an algebraic abstraction of logical operators) at
its core [110]. Ultimately this should not be terribly surpris-
ing: the progenitor of most modern approaches to linguistic
semantics was Richard Montague [123, 124], a logician by
training (a PhD student of Tarski, in fact). Thus modern ap-
proaches to linguistic semantics and programming language
semantics have common roots.
Natural language, like all programming languages, has

expressions which refer to other expressions, including pro-
nouns (“it is up-to-date”) and some uses of definite articles
(“the system orchestrator”). As in programming languages,
some of these references are resolved statically, while others
are resolved dynamically. Formal grammars with semantic
components often include variants of a classic proposal [91]
to add grammatical categories𝐴|𝐵, that is, an𝐴 with a 𝐵 (the
referent) missing somewhere internally, essentially tracking
the set of free variables of an expression, plus rules that com-
binewith the𝐴while lifting the𝐵 (e.g., a𝐶/𝐴 left of𝐴|𝐵 turns

20This is slightly over-simplifying, since denotations are sometimes ascribed
to derivations involving trees, rather than trees themselves, though the same
caveat carries over analogously to our discussion here.

into 𝐶 |𝐵). There are also dynamically resolved references
(akin to heap accesses), if semantics are enriched to pass a
data structure modeling the current state of discourse (see
Section 5), those correspond to dynamic lookups in a data
structure [71, 119], as a special case of the use of (delimited)
continuations in natural language semantics [12]. Thus one
could use these grammar formalisms to specify the semantics
of language construct extensions directly alongside syntactic
extensions, in a fully modular fashion (recall that continu-
ations can be used to express computational effects [54]).

As a concise example, we revisit the arithmetic expressions
from earlier, this time giving denotational semantics as part
of the grammar combination rules:

𝑛 ⊢ 𝑒 ⇒ parseNum(𝑛)
𝑠 ⊢ 𝐴 ⇒ 𝑎 𝑠′ ⊢ 𝐴 \ 𝐵 ⇒ 𝑓

𝑠, 𝑠′ ⊢ 𝐵 ⇒ 𝑓 𝑎

𝑠 ⊢ 𝐵/𝐴 ⇒ 𝑓 𝑠′ ⊢ 𝐴 ⇒ 𝑎

𝑠, 𝑠′ ⊢ 𝐵 ⇒ 𝑓 𝑎

This grammar is the same as the earlier example, extended
with a term of a lambda calculus representing how meanings
are composed, to the right of ⇒ in each rule. The semantics
of a (string representation of a) number are given by reifying
that number as a numeric datatype. The semantics for the
“predicate-argument” rules of the grammar are in fact func-
tion application: the text fragment whose grammatical cate-
gory has a slash with an argument is in fact a function taking
an argument, and its semantics (𝑓) are applied to the seman-
tics of the argument (𝑎). Here, there is a strict relationship
between the grammatical categories and their denotations:
𝑒s denote numbers (we ignore representational choices here),
slash types denote functions from the denotation of their
grammatical domain to the denotation of their grammatical
codomain. Lexical entries are similarly augmented with se-
mantics. For example, the denotation assigned to ∗ would be
_𝑟 . _𝑙 . 𝑙 ∗ 𝑟 (where the ∗ in the semantics is the denotational
multiplication operation). Thus we can extend our earlier
“parse tree” to both parse and assign semantics:

3 ⊢ 𝑒 ⇒ 3
∗ ⊢ (𝑒 \ 𝑒)/𝑒 ⇒ _𝑟 . _𝑙 . 𝑙 ∗ 𝑟 3 ⊢ 𝑒 ⇒ 3

∗3 ⊢ 𝑒 \ 𝑒 ⇒ _𝑙 . 𝑙 ∗ 3
3 ∗ 3 ⊢ 𝑒 ⇒ 9

Note that the ∗ on the left is syntax for multiplication, while
the ∗ on the right is the actual multiplication operation of
the lambda calculus for the semantics.

As with the syntax example, this does not demonstrate the
full generality of this technique. Studies of formal linguistic
semantics have ventured far into the domains of semantics
that exploit monads [8] and continuations [12] in conjunc-
tion with syntax (of natural language) given in this form.
These ideas compose neatly with parses of context-sensitive
languages as above, as the result of the parsing remains a

The Linguistics of Programming Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

3 ⊢ 𝑒 ⇒ (Const 3)
∗ ⊢ (𝑒 \ 𝑒)/𝑒 ⇒ _𝑟 . _𝑙 . Times 𝑙 𝑟 4 ⊢ 𝑒 ⇒ (Const 4)

∗ 4 ⊢ 𝑒 \ 𝑒 ⇒ _𝑙 . Times 𝑙 (Const 4)
3 ∗ 4 ⊢ 𝑒 ⇒ Times (Const 3) (Const 4)

Figure 1. Producing a classic parse tree from a categorial grammar.

tree structure (recall that common restrictions on trees yield
context-sensitive languages [156]). This can also be extended
beyond the typical realms of semantics for natural languages,
including generating formal specifications [67, 162, 163] or
even tests [66] in fragments of English with limited vocab-
ulary but no a priori restrictions on grammatical structure.
This seems a promising toolbox for modularly defining lan-
guage syntax and semantics.

This kind of need formodularity arises not only inmetathe-
ory [40, 41], but also in practical implementations. Hermans’
Hedy language [80] is one of the few languages which actu-
ally internationalizes its syntax (and script [175]). Van der
Storm and Hermans [183] describe how this works via a
rich formalism for defining modifications or derivatives of
context-free grammars which can be compiled into parsers
yielding the same structures, even when parsing a localiza-
tion of Hedy which may not only translate constants and
keywords, but even change ordering of portions of syntactic
constructs. They also describe grammar-level support for
language levels (where certain constructs are withheld for
students at varying points in their learning) akin to (though
seemingly more flexible than) the language levels used in
teaching Racket [52, 56]. Lexicalized grammars can do much
of the same. We could switch our arithmetic example to
prenex operator syntax by swapping the operator entries
above for + ⊢ (𝑒/𝑒)/𝑒 ⇒ _𝑙 . _𝑟 . 𝑙 + 𝑟 . This entry differs from
the earlier entry for + by looking for both arguments to its
right. The first (outer, rightmost) 𝑒 argument will be the left
argument, and the inner 𝑒 argument will be to the right of
that partial parse result:

+ ⊢ (𝑒/𝑒)/𝑒 ⇒ _𝑙 . _𝑟 . 𝑙 + 𝑟 3 ⊢ 𝑒 ⇒ 3
+ 3 ⊢ 𝑒/𝑒 ⇒ _𝑟 . 3 + 𝑟 4 ⊢ 𝑒 ⇒ 4

+ 3 4 ⊢ 𝑒 ⇒ 7

Something similar to (the syntactic aspects of) language
levels can be done by partitioning lexical entries and in-
cluding only entries from the desired range when parsing
(similar to how van der Storm and Hermans handle produc-
tions from different levels). Localization (swapping in entries
for different natural language keywords and syntactic rear-
rangements) can be handled by also controlling which lexical
entries are included or excluded, e.g. swapping in a lexical
entry for wahr rather than true when localizing to German.
Moreover, semantics are not required to be logical for-

mulae or other structures with established mathematical

denotations, but the results can in fact simply be other struc-
tures, such as more traditional parse trees. As a toy example,
we could consider changing parsing order and symbols while
still generating an arithmetic expression from an AST:

type Expr = Const Nat | Add Expr Expr | Sub Expr Expr | ...

We can replace the earlier lexical entries for + and ∗ by

+ ⊢ (𝑒 \ 𝑒)/𝑒 ⇒ _𝑟 . _𝑙 .Add l r

∗ ⊢ (𝑒 \ 𝑒)/𝑒 ⇒ _𝑟 . _𝑙 . Times l r

(and similarly for other operators) to generate ASTs rather
than denotations, as in Figure 1. (This applies to the prenex
version just as easily.)

Experienced language implementors might ask at this
point what error messages would look like for such an ap-
proach. This is an excellent open question, whose solutions
would have applications in both PL and SE research [66, 67]
and linguistics.

7 Conclusions
We conceive of this essay as an invitation to PL and SE
researchers to sample from the deep, broad reservoir of lin-
guistics ideas. In this essay we have attempted to draw out a
wide range of connections between problems addressed by
software engineering and programming languages research
in regard to programs (and text about programs), and ques-
tions addressed by linguistic research in regard to natural
language in varied contexts. We have demonstrated a range
of thematic parallels between these two sides suggesting
some potential value, examples of linguistics results refining
the context for results from PL and SE research, and touched
on cases of likely productive transfer from linguistics into
PL and SE research. Our examples, large and small, have
drawn out the connections across many facets of PL and SE
research, from human factors like interpretation of linguistic
instructions and learning of programming languages, to so-
ciological processes of language evolution, general method-
ological concerns, and specific technical devices. Our hope is
that this encourages researchers in these areas to explore the
wealth of ideas that linguists have been exploring for decades
in parallel with our communities’ work, for additional per-
spective if not direct gain. Linguistics as a field has insights
close to virtually every corner and every style of research in
programming languages and software engineering.

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Colin S. Gordon

Acknowledgments
This work was supported in part by NSF Award CCF-2220991.

References
[1] Atef Odeh AbuSa’aleek. 2015. Internet linguistics: A linguistic analy-

sis of electronic discourse as a new variety of language. International
journal of English linguistics 5, 1 (2015), 135.

[2] Paul Adamczyk. 2011. On the language metaphor. In Proceedings
of the 10th SIGPLAN symposium on New ideas, new paradigms, and
reflections on programming and software. 121–128.

[3] Michael D Adams and Matthew Might. 2017. Restricting grammars
with tree automata. Proceedings of the ACM on Programming Lan-
guages 1, OOPSLA (2017), 1–25.

[4] David Adger andGraeme Trousdale. 2007. Variation in English syntax:
theoretical implications. English Language & Linguistics 11, 2 (2007),
261–278.

[5] Nobuhiko Akamatsu. 2003. The effects of first language orthographic
features on second language reading in text. Language learning 53, 2
(2003), 207–231.

[6] Waad Alhoshan, Riza Batista-Navarro, and Liping Zhao. 2018. To-
wards a corpus of requirements documents enriched with semantic
frame annotations. In 2018 IEEE 26th International Requirements En-
gineering Conference (RE). IEEE, 428–431.

[7] Nicholas Asher, Swarnadeep Bhar, Akshay Chaturvedi, Julie Hunter,
and Soumya Paul. 2023. Limits for learning with language models. In
Proceedings of the 12th Joint Conference on Lexical and Computational
Semantics (*SEM 2023), Alexis Palmer and Jose Camacho-collados
(Eds.). Association for Computational Linguistics, Toronto, Canada,
236–248. https://doi.org/10.18653/v1/2023.starsem-1.22

[8] Ash Asudeh and Gianluca Giorgolo. 2020. Enriched meanings: Natural
language semantics with category theory. Oxford Studies in Semantics
and Pragmatics, Vol. 13. Oxford University Press.

[9] Sebastian Baltes and Paul Ralph. 2022. Sampling in software engi-
neering research: A critical review and guidelines. Empirical Software
Engineering 27, 4 (2022), 94.

[10] Lingfeng Bao, David Lo, Xin Xia, Xinyu Wang, and Cong Tian. 2016.
How Android app developers manage power consumption? An em-
pirical study by mining power management commits. In Proceedings
of the 13th International Conference on Mining Software Repositories.
37–48.

[11] Camilla Bardel and Ylva Falk. 2007. The role of the second language
in third language acquisition: The case of Germanic syntax. Second
language research 23, 4 (2007), 459–484.

[12] Chris Barker and Chung-chieh Shan. 2014. Continuations and natural
language. Oxford Studies in Theoretical Linguistics, Vol. 53. Oxford
University Press.

[13] John G Barnitz. 1982. Orthographies, bilingualism and learning to
read English as a second language. The Reading Teacher 35, 5 (1982),
560–567.

[14] Julia Belyakova, Benjamin Chung, Ross Tate, and Jan Vitek. 2024.
Decidable Subtyping of Existential Types for Julia. Proceedings of the
ACM on Programming Languages 8 (2024). Issue PLDI.

[15] Gavin Bierman, Claudio Russo, Geoffrey Mainland, Erik Meijer, and
Mads Torgersen. 2012. Pause’n’play: Formalizing asynchronous c.
In European Conference on Object-Oriented Programming. Springer,
233–257.

[16] Sumon Biswas, Md Johirul Islam, Yijia Huang, and Hridesh Rajan.
2019. Boa meets python: A boa dataset of data science software in
python language. In 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR). IEEE, 577–581.

[17] Andrew P Black, Kim B Bruce, Michael Homer, and James Noble.
2012. Grace: the absence of (inessential) difficulty. In Proceedings of
the ACM international symposium on New ideas, new paradigms, and

reflections on programming and software. 85–98.
[18] Barry Boehm, Hans Dieter Rombach, and Marvin V Zelkowitz. 2005.

Foundations of empirical software engineering: the legacy of Victor R.
Basili. Springer Science & Business Media.

[19] Jeffrey Bonar and Elliot Soloway. 1983. Uncovering principles
of novice programming. In Proceedings of the 10th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages. 10–13.

[20] Jürgen Börstler, Kwabena E Bennin, Sara Hooshangi, Johan Jeuring,
Hieke Keuning, Carsten Kleiner, Bonnie MacKellar, Rodrigo Duran,
Harald Störrle, Daniel Toll, et al. 2023. Developers talking about code
quality. Empirical Software Engineering 28, 6 (2023), 128.

[21] Joan Bresnan, Ronald M Kaplan, Stanley Peters, and Annie Zaenen.
1982. Cross-Serial Dependencies in Dutch. Linguistic Inquiry 13, 4
(1982), 613–635.

[22] Anne Brygoo, Totou Durand, Pascale Manoury, Christian Queinnec,
and Michele Soria. 2002. Experiment around a training engine. TelE-
Learning: The Challenge for the Third Millennium (2002), 45–52.

[23] A Brygoo, T Durand, P Manoury, C Queinnec, and M Soria. 2002. Un
cédérom pour Scheme, Chacun son entraîneur, un entraîneur pour
tous. In Actes du colloque TICE.

[24] Chris Callison-Burch, Miles Osborne, and Philipp Koehn. 2006. Re-
evaluating the role of BLEU in machine translation research. In 11th
conference of the european chapter of the association for computational
linguistics. 249–256.

[25] Stan Carey. 2013. Singular they, you, and a ‘senseless way of speak-
ing’. https://stancarey.wordpress.com/2013/01/29/singular-they-
you-and-a-senseless-way-of-speaking/

[26] Bob Carpenter. 1991. The generative power of categorial grammars
and head-driven phrase structure grammars with lexical rules. Com-
putational linguistics 17, 3 (1991), 301–314.

[27] Bob Carpenter. 1999. The Turing-completeness of multimodal cate-
gorial grammars. JFAK: Essays dedicated to Johan van Benthem on the
occasion of his 50th birthday. Institute for Logic, Language, and Compu-
tation, University of Amsterdam. Available on CD-ROM at http://turing.
wins. uva. nl (1999).

[28] Sofia Charalampidou, Apostolos Ampatzoglou, Alexander Chatzi-
georgiou, Antonios Gkortzis, and Paris Avgeriou. 2016. Identifying
extract method refactoring opportunities based on functional rel-
evance. IEEE Transactions on Software Engineering 43, 10 (2016),
954–974.

[29] Gary Charness, Edi Karni, and Dan Levin. 2010. On the conjunc-
tion fallacy in probability judgment: New experimental evidence
regarding Linda. Games and Economic Behavior 68, 2 (2010), 551–556.

[30] Sarah E Chasins, Elena L Glassman, and Joshua Sunshine. 2021. PL
and HCI: better together. Commun. ACM 64, 8 (2021), 98–106.

[31] Preetha Chatterjee, Kostadin Damevski, Nicholas A Kraft, and Lori
Pollock. 2020. Software-related slack chats with disentangled conver-
sations. In Proceedings of the 17th international conference on mining
software repositories. 588–592.

[32] Preetha Chatterjee, Kostadin Damevski, Nicholas A Kraft, and Lori
Pollock. 2021. Automatically identifying the quality of developer
chats for post hoc use. ACM Transactions on Software Engineering
and Methodology (TOSEM) 30, 4 (2021), 1–28.

[33] Preetha Chatterjee, Kostadin Damevski, and Lori Pollock. 2021. Auto-
matic extraction of opinion-based Q&A from online developer chats.
In 2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing (ICSE). IEEE, 1260–1272.

[34] Preetha Chatterjee, Kostadin Damevski, Lori Pollock, Vinay Augus-
tine, and Nicholas A Kraft. 2019. Exploratory study of slack q&a chats
as a mining source for software engineering tools. In 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR).
IEEE, 490–501.

[35] Tse-Hsun Chen, Weiyi Shang, Jinqiu Yang, Ahmed E Hassan,
Michael W Godfrey, Mohamed Nasser, and Parminder Flora. 2016.

https://doi.org/10.18653/v1/2023.starsem-1.22
https://stancarey.wordpress.com/2013/01/29/singular-they-you-and-a-senseless-way-of-speaking/
https://stancarey.wordpress.com/2013/01/29/singular-they-you-and-a-senseless-way-of-speaking/

The Linguistics of Programming Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

An empirical study on the practice of maintaining object-relational
mapping code in java systems. In Proceedings of the 13th International
Conference on Mining Software Repositories. 165–176.

[36] Thomas Cho. 2010. Linguistic features of electronic mail in the
workplace: A comparison with memoranda. Language@ internet 7, 3
(2010).

[37] Noam Chomsky. 1956. Three models for the description of language.
IRE Transactions on information theory 2, 3 (1956), 113–124.

[38] Jennifer Culbertson. 2023. Artificial language learning. In The Oxford
Handbook of Experimental Syntax. Oxford University Press. https:
//doi.org/10.1093/oxfordhb/9780198797722.013.9

[39] Rachele De Felice, Jeannique Darby, Anthony Fisher, and David Pe-
plow. 2013. A classification scheme for annotating speech acts in a
business email corpus. Icame Journal 37 (2013), 71–105.

[40] Benjamin Delaware, Bruno C d. S. Oliveira, and Tom Schrijvers.
2013. Meta-theory à la carte. In Proceedings of the 40th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages.
207–218.

[41] Benjamin Delaware, Steven Keuchel, Tom Schrijvers, and Bruno CdS
Oliveira. 2013. Modular monadic meta-theory. In Proceedings of the
18th ACM SIGPLAN international conference on Functional program-
ming. 319–330.

[42] Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. 2012. All
syntax errors are not equal. In Proceedings of the 17th ACM annual
conference on Innovation and technology in computer science education.
75–80.

[43] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hen-
drickx. 2011. Understanding the syntax barrier for novices. In Proceed-
ings of the 16th annual joint conference on Innovation and technology
in computer science education. 208–212.

[44] Samanta Dey, Venkatesh Vinayakarao, Monika Gupta, and Sampath
Dechu. 2022. Evaluating commit message generation: to BLEU or not
to BLEU?. In Proceedings of the ACM/IEEE 44th International Confer-
ence on Software Engineering: New Ideas and Emerging Results. 31–35.

[45] Eli Dresner and Susan C Herring. 2010. Functions of the nonverbal
in CMC: Emoticons and illocutionary force. Communication theory
20, 3 (2010), 249–268.

[46] Matthew B Dwyer, George S Avrunin, and James C Corbett. 1999.
Patterns in property specifications for finite-state verification. In
Proceedings of the 21st international conference on Software engineering.
411–420.

[47] Jesse Egbert, Douglas Biber, and Bethany Gray. 2022. Designing
and evaluating language corpora: A practical framework for corpus
representativeness. Cambridge University Press.

[48] Osama Ehsan, Safwat Hassan, Mariam El Mezouar, and Ying Zou.
2020. An empirical study of developer discussions in the gitter plat-
form. ACM Transactions on Software Engineering and Methodology
(TOSEM) 30, 1 (2020), 1–39.

[49] Micha Elsner and Eugene Charniak. 2010. Disentangling chat. Com-
putational Linguistics 36, 3 (2010), 389–409.

[50] Allyson Ettinger. 2020. What BERT is not: Lessons from a new suite
of psycholinguistic diagnostics for language models. Transactions of
the Association for Computational Linguistics 8 (2020), 34–48.

[51] Dror G Feitelson, Ayelet Mizrahi, Nofar Noy, Aviad Ben Shabat, Or
Eliyahu, and Roy Sheffer. 2020. How developers choose names. IEEE
Transactions on Software Engineering 48, 1 (2020), 37–52.

[52] Mattias Felleisen. 1998. The DrScheme project: an overview. ACM
Sigplan Notices 33, 6 (1998), 17–23.

[53] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram
Krishnamurthi. 2018. How to design programs: an introduction to
programming and computing. MIT Press.

[54] Andrzej Filinski. 1994. Representing monads. In Proceedings of the
21st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. 446–457.

[55] Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew
Flatt, Shriram Krishnamurthi, Paul Steckler, and Matthias Felleisen.
2002. DrScheme: A programming environment for Scheme. Journal
of functional programming 12, 2 (2002), 159–182.

[56] Robert Bruce Findler, Cormac Flanagan, Matthew Flatt, Shriram Kr-
ishnamurthi, and Matthias Felleisen. 1997. DrScheme: A pedagogic
programming environment for Scheme. In Programming Languages:
Implementations, Logics, and Programs: 9th International Symposium,
PLILP’97 Including a Special Track on Declarative Programming Lan-
guages in Education Southampton, UK, September 3–5, 1997 Proceedings
9. Springer, 369–388.

[57] John R. Firth. 1957. Modes of meaning. In Papers in Linguistics,
1934–1951. Oxford University Press.

[58] Scott D Fleming, Chris Scaffidi, David Piorkowski, Margaret Burnett,
Rachel Bellamy, Joseph Lawrance, and Irwin Kwan. 2013. An informa-
tion foraging theory perspective on tools for debugging, refactoring,
and reuse tasks. ACM Transactions on Software Engineering and
Methodology (TOSEM) 22, 2 (2013), 1–41.

[59] Suzanne Flynn, Claire Foley, and Inna Vinnitskaya. 2004. The
cumulative-enhancement model for language acquisition: Comparing
adults’ and children’s patterns of development in first, second and
third language acquisition of relative clauses. International journal of
multilingualism 1, 1 (2004), 3–16.

[60] Angela Cora Garcia and Jennifer Baker Jacobs. 1999. The eyes
of the beholder: Understanding the turn-taking system in quasi-
synchronous computer-mediated communication. Research on lan-
guage and social interaction 32, 4 (1999), 337–367.

[61] Susan M Gass and Larry Selinker. 1992. Language transfer in language
learning: Revised edition. Vol. 5. John Benjamins Publishing.

[62] Jeremy Gibbons. 2017. On “Methodological Irregularities in Program-
ming Language Research”. (2017). https://www.cs.ox.ac.uk/jeremy.
gibbons/publications/methodological.pdf

[63] Gerd Gigerenzer. 1996. On Narrow Norms and Vague Heuristics: A
Reply to Kahneman and Tversky (1996). Psychological Review 103, 3
(1996), 592–596.

[64] Grant Goodall. 2023. Constructed languages. Annual Review of
Linguistics 9, 1 (2023), 419–437.

[65] AdamGoodkind and Klinton Bicknell. 2018. Predictive power of word
surprisal for reading times is a linear function of language model
quality. In Proceedings of the 8th workshop on cognitive modeling and
computational linguistics (CMCL 2018). 10–18.

[66] Colin S Gordon. 2022. Towards property-based tests in natural lan-
guage. In Proceedings of the ACM/IEEE 44th International Conference
on Software Engineering: New Ideas and Emerging Results. 111–115.

[67] Colin S Gordon and Sergey Matskevich. 2023. Trustworthy Formal
Natural Language Specifications. In Proceedings of the 2023 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software. 50–70.

[68] Stanisław Goźdź-Roszkowski. 2021. Corpus linguistics in legal dis-
course. International Journal for the Semiotics of Law-Revue interna-
tionale de Sémiotique juridique 34, 5 (2021), 1515–1540.

[69] Ben Greenman, Sam Saarinen, Tim Nelson, and Shriram Krishna-
murthi. 2022. Little Tricky Logic: Misconceptions in the Understand-
ing of LTL. The Art, Science, and Engineering of Programming 7, 2
(2022).

[70] Herbert P Grice. 1975. Logic and conversation. In Speech acts. Brill,
41–58.

[71] Julian Grove and Jean-Philippe Bernardy. 2022. Algebraic effects
for extensible dynamic semantics. Journal of Logic, Language and
Information (2022), 1–27.

[72] Philip J Guo. 2018. Non-native english speakers learning computer
programming: Barriers , desires, and design opportunities. In Pro-
ceedings of the 2018 CHI conference on human factors in computing
systems. 1–14.

https://doi.org/10.1093/oxfordhb/9780198797722.013.9
https://doi.org/10.1093/oxfordhb/9780198797722.013.9
https://www.cs.ox.ac.uk/jeremy.gibbons/publications/methodological.pdf
https://www.cs.ox.ac.uk/jeremy.gibbons/publications/methodological.pdf

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Colin S. Gordon

[73] Anja Guzzi, Alberto Bacchelli, Michele Lanza, Martin Pinzger, and
Arie Van Deursen. 2013. Communication in open source software
development mailing lists. In 2013 10th Working Conference on Mining
Software Repositories (MSR). IEEE, 277–286.

[74] Kevin Hammond and Stephen Blott. 1990. Implementing Haskell type
classes. In Functional Programming: Proceedings of the 1989 Glasgow
Workshop 21–23 August 1989, Fraserburgh, Scotland. Springer, 265–
286.

[75] Michael Handford. 2017. Corpus linguistics. In The Routledge hand-
book of language in the workplace. Routledge, 51–64.

[76] Stefan Hanenberg. 2010. An experiment about static and dynamic
type systems: Doubts about the positive impact of static type sys-
tems on development time. In Proceedings of the ACM international
conference on Object oriented programming systems languages and
applications. 22–35.

[77] Stefan Hanenberg. 2010. Faith, hope, and love: an essay on software
science’s neglect of human factors. In Proceedings of the ACM interna-
tional conference on Object oriented programming systems languages
and applications. 933–946.

[78] Randy Harris. 1994. Review of The Language Instinct. The Globe &
Mail (18 June 1994). https://arts.uwaterloo.ca/~raha/reviews/Harris-
Pinker.pdf

[79] Randy Allen Harris. 2021. The linguistics wars: Chomsky, Lakoff, and
the battle over deep structure. Oxford University Press.

[80] Felienne Hermans. 2020. Hedy: a gradual language for programming
education. In Proceedings of the 2020 ACM conference on international
computing education research. 259–270.

[81] Felienne Hermans. 2023. Creating a learnable and inclusive program-
ming language. Keynote presentation at Onward! 2023.

[82] Susan Herring. 1999. Interactional Coherence in CMC. Journal of
Computer-Mediated Communication 4, 4 (1999).

[83] Susan C Herring. 1996. Computer-mediated communication.
Computer-Mediated Communication (1996), 1–332.

[84] Susan C Herring. 2004. Computer-mediated discourse analysis: An
approach to researching online behavior. Designing for virtual com-
munities in the service of learning 338 (2004), 376.

[85] Raymond Hickey. 2020. The handbook of language contact. John
Wiley & Sons.

[86] James Higginbotham. 1984. English Is Not a Context-Free Language.
Linguistic Inquiry 15, 2 (1984), 225–234.

[87] Martin Hilpert and Stefan Th Gries. 2016. Quantitative approaches
to diachronic corpus linguistics. The Cambridge handbook of English
historical linguistics (2016), 36–53.

[88] Janet Holmes and Maria Stubbe. 2015. Power and politeness in the
workplace: A sociolinguistic analysis of talk at work. Routledge.

[89] Yan Huang. 2017. The Oxford handbook of pragmatics. Oxford Uni-
versity Press.

[90] James RHurford. 1974. Exclusive or inclusive disjunction. Foundations
of language 11, 3 (1974), 409–411.

[91] Pauline Jacobson. 1999. Towards a variable-free semantics. Linguistics
and philosophy (1999), 117–184.

[92] Ende Jin, Nada Amin, and Yizhou Zhang. 2023. Extensible Metathe-
ory Mechanization via Family Polymorphism. Proc. of the ACM on
Programming Languages (PACMPL) 7 (2023).

[93] Arvind K. Joshi, K. Vijay Shanker, and David Weir. 1991. The conver-
gence of mildly context-sensitive grammatical formalisms. Founda-
tions issues in natural language processing (1991), 31–81.

[94] Laura Kallmeyer. 2010. Parsing beyond context-free grammars.
Springer Science & Business Media.

[95] Vineeth Kashyap, John Sarracino, John Wagner, Ben Wiedermann,
and Ben Hardekopf. 2013. Type refinement for static analysis of
JavaScript. In Proceedings of the 9th symposium on Dynamic languages.
17–26.

[96] Sumitra Mangesh Katre et al. 1989. As. t. ādhyāyı̄ of Pān. ini. Motilal
Banarsidass Publ.

[97] Caitlin Kelleher and Randy Pausch. 2005. Lowering the barriers
to programming: A taxonomy of programming environments and
languages for novice programmers. ACM computing surveys (CSUR)
37, 2 (2005), 83–137.

[98] Eric Kellerman. 1977. Towards a characterisation of the strategy of
transfer in second language learning. Interlanguage studies bulletin
(1977), 58–145.

[99] Steven Keuchel and Tom Schrijvers. 2013. Generic datatypes à la
carte. In Proceedings of the 9th ACM SIGPLAN Workshop on Generic
Programming. 13–24.

[100] Amy J Ko and Brad A Myers. 2008. Debugging reinvented: asking
and answering why and why not questions about program behav-
ior. In Proceedings of the 30th international conference on Software
engineering. 301–310.

[101] Amy J Ko, Brad A Myers, and Duen Horng Chau. 2006. A linguistic
analysis of how people describe software problems. In Visual Lan-
guages and Human-Centric Computing (VL/HCC’06). IEEE, 127–134.

[102] Jordan Kodner, Spencer Caplan, and Charles Yang. 2022. Another
model not for the learning of language. Proceedings of the National
Academy of Sciences 119, 29 (2022), e2204664119.

[103] Charles W Kreidler. 1979. Creating new words by shortening. Journal
of English Linguistics 13, 1 (1979), 24–36.

[104] Shriram Krishnamurthi and Kathi Fisler. 2019. Programming
Paradigms and Beyond.

[105] Henry Kučera and Winthrop Nelson Francis. 1967. Computational
analysis of present-day American English. Brown university press.

[106] Marco Kuhlmann, Alexander Koller, and Giorgio Satta. 2015. Lexical-
ization and generative power in CCG. Computational Linguistics 41,
2 (2015), 215–247.

[107] Marco Kuhlmann, Giorgio Satta, and Peter Jonsson. 2018. On the
complexity of CCG parsing. Computational Linguistics 44, 3 (2018),
447–482.

[108] Barry L Kurtz. 1980. Investigating the relationship between the de-
velopment of abstract reasoning and performance in an introductory
programming class. In Proceedings of the eleventh SIGCSE technical
symposium on Computer science education. 110–117.

[109] Joachim Lambek. 1958. The mathematics of sentence structure. The
American Mathematical Monthly 65, 3 (1958), 154–170.

[110] Joachim Lambek. 1988. Categorial and categorical grammars. In
Categorial grammars and natural language structures. Springer, 297–
317.

[111] Joseph Lawrance, Rachel Bellamy, and Margaret Burnett. 2007. Scents
in programs: Does information foraging theory apply to program
maintenance?. In IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC 2007). IEEE, 15–22.

[112] Joseph Lawrance, Christopher Bogart, Margaret Burnett, Rachel Bel-
lamy, Kyle Rector, and Scott D Fleming. 2010. How programmers
debug, revisited: An information foraging theory perspective. IEEE
Transactions on Software Engineering 39, 2 (2010), 197–215.

[113] Jacqueline Léon. 2005. Meaning by collocation. History of linguistics
(2005), 404–415.

[114] Matthew C Loring, Mark Marron, and Daan Leijen. 2017. Semantics
of asynchronous JavaScript. In Proceedings of the 13th ACM SIGPLAN
International Symposium on on Dynamic Languages. 51–62.

[115] Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel
Tshukudu. 2023. What Happens When Students Switch (Functional)
Languages (Experience Report). Proceedings of the ACM on Program-
ming Languages 7, ICFP (2023), 796–812.

[116] John H Mabry. 1995. Review of Pinker’s the language instinct. The
Analysis of verbal behavior 12 (1995), 87.

[117] Daniel Marino and Todd Millstein. 2009. A generic type-and-effect
system. In Proceedings of the 4th international workshop on Types in

https://arts.uwaterloo.ca/~raha/reviews/Harris-Pinker.pdf
https://arts.uwaterloo.ca/~raha/reviews/Harris-Pinker.pdf

The Linguistics of Programming Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

language design and implementation. 39–50.
[118] Karoline Marko. 2022. “Depends on Who I’m Writing To”—The

Influence of Addressees and Personality Traits on the Use of Emoji
and Emoticons, and Related Implications for Forensic Authorship
Analysis. Frontiers in Communication 7 (2022), 38.

[119] Jirka Maršík and Maxime Amblard. 2016. Introducing a calculus
of effects and handlers for natural language semantics. In Formal
Grammar: 20th and 21st International Conferences, FG 2015, Barcelona,
Spain, August 2015, Revised Selected Papers. FG 2016, Bozen, Italy,
August 2016, Proceedings 21. Springer, 257–272.

[120] Tony McEnery and Andrew Hardie. 2013. The history of corpus
linguistics. In The Oxford Handbook of the History of Linguistics, Keith
Allan (Ed.).

[121] Wayne S Messer and Richard A Griggs. 1993. Another look at Linda.
Bulletin of the Psychonomic Society 31, 3 (1993), 193–196.

[122] Mark S Miller, E Dean Tribble, and Jonathan Shapiro. 2005. Concur-
rency among strangers: Programming in E as plan coordination. In
Trustworthy Global Computing: International Symposium, TGC 2005
, Edinburgh, UK, April 7-9, 2005. Revised Selected Papers. Springer,
195–229.

[123] Richard Montague. 1970. English as a Formal Language. In Lin-
guaggi nella societa e nella tecnica, Bruno Visentini (Ed.). Edizioni di
Communita, 188–221.

[124] Richard Montague. 1973. The proper treatment of quantification
in ordinary English. In Approaches to natural language: Proceedings
of the 1970 Stanford workshop on grammar and semantics. Springer,
221–242.

[125] Hans-Georg Müller and Christoph Schroeder. 2024. On the influence
of the first language on orthographic competences in German as a
second language: A comparative analysis. Applied Linguistics Review
15, 2 (2024), 449–473.

[126] Denise E Murray. 1985. Composition as conversation: The computer
terminal as medium of communication. Writing in nonacademic
settings (1985), 203–227.

[127] Denise E Murray. 1988. The context of oral and written language: A
framework for mode and medium switching1. Language in society
17, 3 (1988), 351–373.

[128] Frederick J Newmeyer. 2022. American linguistics in transition: from
post-Bloomfieldian structuralism to generative grammar. Oxford Uni-
versity Press.

[129] Jeremy W Nimmer and Michael D Ernst. 2002. Invariant inference
for static checking: An empirical evaluation. ACM SIGSOFT Software
Engineering Notes 27, 6 (2002), 11–20.

[130] James Noble and Robert Biddle. 2023. programmingLanguage as
Language. In Proceedings of the 2023 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Program-
ming and Software. 191–204.

[131] James Noble, Michael Homer, Kim B Bruce, and Andrew P Black.
2013. Designing grace: Can an introductory programming language
support the teaching of software engineering?. In 2013 26th Inter-
national Conference on Software Engineering Education and Training
(CSEE&T). IEEE, 219–228.

[132] Bruno C d S Oliveira, Adriaan Moors, and Martin Odersky. 2010. Type
Classes as Objects and Implicits. In Proceedings of the ACM interna-
tional conference on Object oriented programming systems languages
and applications. ACM, 341–360.

[133] Inc. Oracle. 2021. Java Pattern Matching. https://docs.oracle.com/
en/java/javase/17/language/pattern-matching.html

[134] Lalchand Pandia and Allyson Ettinger. 2021. Sorting through the
noise: Testing robustness of information processing in pre-trained
language models. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing. Association for Compu-
tational Linguistics, Online and Punta Cana, Dominican Republic,
1583–1596. https://aclanthology.org/2021.emnlp-main.119

[135] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002.
Bleu: a method for automatic evaluation of machine translation. In
Proceedings of the 40th annual meeting of the Association for Compu-
tational Linguistics. 311–318.

[136] Chris Parnin, Christian Bird, and Emerson Murphy-Hill. 2013. Adop-
tion and use of Java generics. Empirical Software Engineering 18, 6
(2013), 1047–1089.

[137] Luca Pascarella and Alberto Bacchelli. 2017. Classifying code com-
ments in Java open-source software systems. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). IEEE,
227–237.

[138] Norman Peitek, Janet Siegmund, Sven Apel, Christian Kästner, Chris
Parnin, Anja Bethmann, Thomas Leich, Gunter Saake, and André
Brechmann. 2020. A look into programmers’ heads. IEEE Transactions
on Software Engineering 46, 4 (2020), 442–462.

[139] P Stanley Peters Jr and Robert W Ritchie. 1973. On the generative
power of transformational grammars. Information sciences 6 (1973),
49–83.

[140] Kelly Peterson, Matt Hohensee, and Fei Xia. 2011. Email formality in
the workplace: A case study on the Enron corpus. In Proceedings of
the Workshop on Language in Social Media (LSM 2011). 86–95.

[141] Amy E Pierce. 1992. Language Acquisition and Syntactic Theory:
A Comparative Analysis of French and English Child Grammars.
Springer.

[142] Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual
Symposium on Foundations of Computer Science (sfcs 1977). ieee, 46–
57.

[143] Shana Poplack and David Sankoff. 1984. Borrowing: the synchrony
of integration. (1984).

[144] Christopher Potts. 2015. Presupposition and implicature. The hand-
book of contemporary semantic theory (2015), 168–202.

[145] Chantel S Prat, Tara M Madhyastha, Malayka J Mottarella, and Chu-
Hsuan Kuo. 2020. Relating natural language aptitude to individual
differences in learning programming languages. Scientific reports 10,
1 (2020), 3817.

[146] Eloi Puig-Mayenco, Jason Rothman, and Susagna Tubau. 2022. Lan-
guage dominance in the previously acquired languages modulates
rate of third language (L3) development over time: A longitudinal
study. International Journal of Bilingual Education and Bilingualism
25, 5 (2022), 1641–1664.

[147] Zhuang Qiu, Xufeng Duan, and Zhenguang Cai. 2023. Does ChatGPT
Resemble Humans in Processing Implicatures?. In Proceedings of the
4th Natural Logic Meets Machine Learning Workshop. 25–34.

[148] Christian Queinnec and Pierre Weis. 1996. Programmation applica-
tive, état des lieux et perspectives. Technique et science informatiques
15 (1996). Issue 7.

[149] Abderahman Rashwan, Olga Ormandjieva, and Rene Witte. 2013.
Ontology-based classification of non-functional requirements in soft-
ware specifications: A new corpus and SVM-based classifier. In 2013
IEEE 37th Annual Computer Software and Applications Conference.
IEEE, 381–386.

[150] Stephanie A Robertson and Martin P Lee. 1995. The application of
second natural language acquisition pedagogy to the teaching of
programming languages—a research agenda. ACM SIGCSE Bulletin
27, 4 (1995), 9–12.

[151] Jason Rothman. 2015. Linguistic and cognitive motivations for the
Typological Primacy Model (TPM) of third language (L3) transfer:
Timing of acquisition and proficiency considered. Bilingualism: lan-
guage and cognition 18, 2 (2015), 179–190.

[152] Geoffrey Sampson. 2007. There is no language instinct. Ilha do
Desterro: A Journal of English Language, Literatures in English and
Cultural Studies 52 (2007), 35–63.

[153] Gillian Sankoff. 2004. Linguistic outcomes of language contact. The
handbook of language variation and change (2004), 638–668.

https://docs.oracle.com/en/java/javase/17/language/pattern-matching.html
https://docs.oracle.com/en/java/javase/17/language/pattern-matching.html
https://aclanthology.org/2021.emnlp-main.119

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Colin S. Gordon

[154] Vicki L Sauter. 1986. Predicting computer programming skill. Com-
puters & Education 10, 2 (1986), 299–302.

[155] Tatjana Scheffler, Lasse Brandt, Marie de la Fuente, and Ivan Nenchev.
2022. The processing of emoji-word substitutions: A self-paced-
reading study. Computers in Human Behavior 127 (2022), 107076.

[156] Karl M Schimpf and Jean H Gallier. 1985. Tree pushdown automata.
J. Comput. System Sci. 30, 1 (1985), 25–40.

[157] Jean Scholtz and Susan Wiedenbeck. 1990. Learning second and sub-
sequent programming languages: A problem of transfer. International
Journal of Human-Computer Interaction 2, 1 (1990), 51–72.

[158] Jean Scholtz and Susan Wiedenbeck. 1991. Learning a new program-
ming language: a model of the planning process. In Proceedings of
the Twenty-Fourth Annual Hawaii International Conference on System
Sciences, Vol. 2. IEEE, 3–12.

[159] Jean Scholtz and Susan Wiedenbeck. 1992. An Analysis of Novice
Programmers Leaming a Second Language. In Empirical Studies of
Programmers: Fifth Workshop (PPIG 1992). 187–205.

[160] Bonnie D Schwartz and Rex A Sprouse. 1996. L2 cognitive states and
the full transfer/full access model. Second language research 12, 1
(1996), 40–72.

[161] Sandro Sciutti. 2020. The acquisition of clitic pronouns in complex
infinitival clauses by German-speaking learners of Italian as an L3:
The role of proficiency in target and background language (s). In Third
language acquisition: Age, proficiency and multilingualism. Language
Sciences Press.

[162] Hiroyuki Seki, Tadao Kasami, Eiji Nabika, and Takashi Matsumura.
1992. A method for translating natural language program specifica-
tions into algebraic specifications. Systems and computers in Japan
23, 11 (1992), 1–16.

[163] Hiroyuki Seki, Eiji Nabika, Takashi Matsumura, Yujii Sugiyama,
Mamoru Fujii, Koji Torii, and Tadao Kasami. 1988. A processing
system for programming specifications in a natural language. In
[1988] Proceedings of the Twenty-First Annual Hawaii International
Conference on System Sciences. Volume II: Software track, Vol. 2. IEEE,
754–763.

[164] Peter Sells, Stuart Merrill Shieber, and Thomas Wasow. 1991. Foun-
dational issues in natural language processing. MIT Press.

[165] Ensheng Shi, Yanlin Wang, Lun Du, Junjie Chen, Shi Han, Hongyu
Zhang, Dongmei Zhang, and Hongbin Sun. 2022. On the evaluation
of neural code summarization. In Proceedings of the 44th International
Conference on Software Engineering. 1597–1608.

[166] Stuart M Shieber. 1985. Evidence against the context-freeness of
natural language. In The Formal complexity of natural language.
Springer, 320–334.

[167] Janet Siegmund, Christian Kästner, Sven Apel, Chris Parnin, Anja
Bethmann, Thomas Leich, Gunter Saake, and André Brechmann. 2014.
Understanding understanding source code with functional magnetic
resonance imaging. In Proceedings of the 36th international conference
on software engineering. 378–389.

[168] Janet Siegmund, Norman Peitek, André Brechmann, Chris Parnin,
and Sven Apel. 2020. Studying programming in the neuroage: just a
crazy idea? Commun. ACM 63, 6 (2020), 30–34.

[169] Sean Stapleton, Yashmeet Gambhir, Alexander LeClair, Zachary Eber-
hart, Westley Weimer, Kevin Leach, and Yu Huang. 2020. A human
study of comprehension and code summarization. In Proceedings of
the 28th International Conference on Program Comprehension. 2–13.

[170] Anatol Stefanowitsch and Stefan Th Gries. 2003. Collostructions: In-
vestigating the interaction of words and constructions. International
journal of corpus linguistics 8, 2 (2003), 209–243.

[171] Andreas Stefik and Stefan Hanenberg. 2017. Methodological irregu-
larities in programming-language research. Computer 50, 8 (2017),
60–63.

[172] Andreas Stefik and Susanna Siebert. 2013. An empirical investigation
into programming language syntax. ACM Transactions on Computing

Education (TOCE) 13, 4 (2013), 1–40.
[173] Daniela Steidl, Benjamin Hummel, and Elmar Juergens. 2013. Quality

analysis of source code comments. In 2013 21st international conference
on program comprehension (icpc). Ieee, 83–92.

[174] Pia Sundqvist. 2024. Extramural English as an individual difference
variable in L2 research: Methodology matters. Annual Review of
Applied Linguistics (2024), 1–13.

[175] Alaaeddin Swidan and Felienne Hermans. 2023. A Framework for
the Localization of Programming Languages. In Proceedings of the
2023 ACM SIGPLAN International Symposium on SPLASH-E. 13–25.

[176] Don Syme, Tomas Petricek, and Dmitry Lomov. 2011. The F# asyn-
chronous programming model. In International Symposium on Practi-
cal Aspects of Declarative Languages. Springer, 175–189.

[177] Stefan Th. Gries. 2021. Analyzing dispersion. In A practical handbook
of corpus linguistics. Springer, 99–118.

[178] Michael Tomasello. 1995. Language Is Not An Instinct. Cognitive
Development 10 (1995), 131–156.

[179] Aaron Traylor, Roman Feiman, and Ellie Pavlick. 2021. AND does
not mean OR: Using Formal Languages to Study Language Models’
Representations. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics.

[180] Ethel Tshukudu and Quintin Cutts. 2020. Understanding concep-
tual transfer for students learning new programming languages. In
Proceedings of the 2020 ACM conference on international computing
education research. 227–237.

[181] Amos Tversky and Daniel Kahneman. 1983. Extensional versus in-
tuitive reasoning: The conjunction fallacy in probability judgment.
Psychological review 90, 4 (1983), 293.

[182] Anne Vainikka and Martha Young-Scholten. 1996. Gradual develop-
ment of L2 phrase structure. Second language research 12, 1 (1996),
7–39.

[183] Tijs van der Storm and Felienne Hermans. 2022. Gradual Grammars:
Syntax in Levels and Locales. In Proceedings of the 15th ACM SIGPLAN
International Conference on Software Language Engineering (Auckland,
New Zealand) (SLE 2022). Association for ComputingMachinery, New
York, NY, USA, 134–147. https://doi.org/10.1145/3567512.3567524

[184] Guido H Wachsmuth, Gabriël DP Konat, and Eelco Visser. 2014. Lan-
guage design with the spoofax language workbench. IEEE software
31, 5 (2014), 35–43.

[185] Alex Warstadt and Samuel R Bowman. 2022. What artificial neural
networks can tell us about human language acquisition. In Algebraic
structures in natural language. CRC Press, 17–60.

[186] Marit Westergaard, Natalia Mitrofanova, Roksolana Mykhaylyk, and
Yulia Rodina. 2017. Crosslinguistic influence in the acquisition of a
third language: The Linguistic Proximity Model. International Journal
of Bilingualism 21, 6 (2017), 666–682.

[187] Andrew K Wright. 1995. Simple imperative polymorphism. Lisp and
symbolic computation 8, 4 (1995), 343–355.

[188] Zejun Zhang, Zhenchang Xing, Xin Xia, Xiwei Xu, and Liming Zhu.
2022. Making python code idiomatic by automatic refactoring non-
idiomatic python code with pythonic idioms. In Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 696–708.

[189] Zejun Zhang, Zhenchang Xing, Xiwei Xu, and Liming Zhu. 2023.
Ridiom: Automatically refactoring non-idiomatic Python code with
pythonic idioms. In 2023 IEEE/ACM 45th International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion).
IEEE, 102–106.

[190] Zejun Zhang, Zhenchang Xing, Dehai Zhao, Qinghua Lu, Xiwei Xu,
and Liming Zhu. 2024. Hard to Read andUnderstand Pythonic Idioms?
DeIdiom and Explain Them in Non-Idiomatic Equivalent Code. In
2024 IEEE/ACM 46th International Conference on Software Engineering
(ICSE). IEEE Computer Society, 1011–1011.

https://doi.org/10.1145/3567512.3567524

The Linguistics of Programming Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

[191] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha
Just, Adrian Schroter, and Cathrin Weiss. 2010. What makes a good
bug report? IEEE Transactions on Software Engineering 36, 5 (2010),

618–643.

Received 2024-04-25; accepted 2024-08-08

	Abstract
	1 Introduction
	2 Parallels Between Linguistics and PL/SE
	3 Human Factors in Language and Tool Design
	3.1 Pragmatics
	3.2 Language Acquisition and the Learning and Design of Programming Languages
	3.3 Other Linguistic Human Factors

	4 Evolution of Language Design and Use
	5 Corpus Methods, for Programs and Text About Them
	6 Analysis of Program Text
	7 Conclusions
	Acknowledgments
	References

