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Abstract
The actor model is a well-established way to approach to

modularly designing and implementing concurrent and/or

distributed systems, seeing increasing adoption in industry.

But deductive verification tailored to actor programs remains

underexplored; general concurrent logics could be used, but

the logics are complex and full of features to reason about

behaviors the actor model strives to avoid.

We explore a relatively lightweight approach of extending

a system for proving sequential program correctness with

means to prove safety properties of actor programs (cur-

rently, assuming no faults). We borrow ideas from hybrid

logic, a modal logic for stating assertions are true at a partic-

ular point in a model (in this case, a particular actor’s local

state). To make such assertions useful, we stabilize them

using rely-guarantee-style reasoning over local actor states,

and only permit sending stable versions of these assertions

to other actors. By carefully restricting the formation of as-

sertions that a proposition is true at a certain actor, we avoid

the need for actors to handle each others’ rely-guarantee

relations explicitly. Finally, we argue that the approach re-

quires only modest adjustments beyond applying traditional

sequential techniques to actors with immutable messages,

by implementing most of the logic as a Dafny library.

CCS Concepts • Theory of computation → Modal and
temporal logics; Program specifications; • Computing
methodologies → Concurrent computing methodolo-
gies.
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1 Introduction
The actor model [23] is a well-established approach to struc-

turing concurrent or distributed programs, addressing the

most prominent challenge of concurrent shared-memory pro-

gramming with threads (i.e., data races) by completely forbid-

ding shared mutable state, instead requiring actor processes

to exchange immutablemessages to update exclusively-actor-

local mutable state. Data race freedom [8, 21] for actors re-

moves some of the most brittle concurrency bugs and makes

it sound to use purely sequential reasoning techniques to

verify properties of an actor’s local behavior. Unfortunately

reasoning about a single actor’s behavior at a time is often

insufficient. One actor’s correctness may depend on know-

ing information about other actors, such as in consensus

algorithms, where an operation is committed if a majority

of nodes have agreed to it — so specifications must refer

to other nodes’ states, and proofs must ensure other nodes

preserve truth of the shared information.

This idea of one part of a program interfering with the

proof assumptions of another part is how Owicki and Gries

[36] approached verification of shared memory concurrent

programs using threads. This attacks the essence of how con-

currency complicates program reasoning, but requires check-

ing that every operation in every thread preserves the truth

of every assertion in every other thread’s proof. Jones [26]

proposed rely-guarantee reasoning to simplify this: summa-

rizing for each thread (1) a guarantee to other threads of the

system that its interference on global state would not exceed

a certain threshold (given as a binary relation on the state

before and after each statement in the thread), and (2) a rely
relation stating an upper bound on what that thread’s proof

assumed other threads might do. Then each thread’s proof

was conducted using only (3) stable assertions (those whose
truth was preserved by any action whose specification fell

within the rely relation) and (4) when threads were composed

in parallel they were checked for compatibility: that each
thread’s guarantee was a subrelation of the other’s rely rela-

tion, ensuring the assumptions each thread made about the

other’s behavior were sound. Rely-guarantee style reasoning

has since been integrated into various flavors of separation

logic [13, 15, 44], and become an implicit reasoning princi-

ple underlying a variety of newer concurrent program logic

constructs [12, 27, 35, 39]. Gordon et al. [19, 20] and Militão

et al. [33, 34] even adapted rely-guarantee reasoning to treat

interference between aliases, regardless of whether the inter-

ference was concurrent or not. These ideas could be applied

to actor programs, but this is a heavyweight approach: these
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techniques include rich support for varieties of interference

that actor systems are designed to avoid by construction. For
programs designed to suit the strengths of the actor model,

it would be appealing to have a lightweight way to extend

the local sequential reasoning supported by data-race-free

actors to permit useful reasoning about other actors.

We give a lightweight adaptation of rely-guarantee-style

reasoning to actors, borrowing ideas from hybrid logic. We

extend a sequential program logic with an assertion @𝑖 (𝑃),
stating that 𝑃 is true of the state at actor 𝑖 . Thus one actor’s

verification assumptions may refer to facts about another

actor’s state, but at runtime an actor’s state remains acces-

sible only to the actor itself. Of course, this alone might

permit an actor to assume another is in exactly a specific

state even when the actor might change its state, so addi-

tional constraints are required. We ensure such assertions

are stable (in the rely-guarantee sense) by equipping each

actor with a guarantee relation describing how it may update

its own state upon processing a message. Assertions about

an actor’s state are required to be stable with respect to its

guarantee, and this is enforced at the time such a property

is established: only actor 𝑖 may initially prove a proposition

of the form@𝑖 (𝑃). To support our “lightweight” claim, we

also show that assuming reference immutability [8, 21], a

sequential verification system (i.e., Dafny [28]) can provide

these principles mostly as a library.

2 A Motivating Example
Let us consider a simple actor program to motivate some

informal reasoning; later we verify the example, but for now

we describe it only in prose (Figure 6 shows code). Let us

assume a model similar to that used by Akka [30]. In Akka,

actors are implemented as a JVM class with a single message

handling method that handles all incoming messages. Actors

are referred to using ActorRefs, which are essentially handles

to specific actors in place of direct object references. Each

actor has a single mailbox, and the actor system itself is re-

sponsible for invoking an actor’s message handling method

once for each message received. Sending messages is asyn-

chronous: the message handler can send many messages, but

send is non-blocking and no success or failure indication is

provided; the only way for an actor to know another actor re-

ceived and processed a message is to later receive a response

message, in a later invocation of the message handler.

The system we are interested in verifying consists of two

actors. The first is a simple counter actor: it keeps a counter

locally, accepts messages indicating the actor should incre-

ment by a certain amount, and replies with the new value.

The second is a “manager” of sorts, which acts as a sort of

proxy to the counter: it can forward increment requests from

external clients (for simplicity assume it does not forward

along the counter’s reply), and it can respond to client re-

quests for a lower bound on the counter’s value. The value it

provides is in caching a lower bound on the counter locally.

If a client requests a lower bound it can reply immediately.

If a client requests an increment, the manager forwards it

along and will later receive a reply from the counter with a

newer value, which it can use to update its lower bound.

Let us consider an informal argument we might use to con-

vince ourselves the manager and counter are correct. There is

one key system invariant: the manager’s local cached value is

always a lower bound on the actual counter’s value. As long

as this is true, it will always be correct for the manager to re-

ply with its latest cached value. Ensuring this is true requires

a two-state invariant [29] on the messages from the counter

to the manager: that the value contained in the message is
and remains less than or equal to the current value. Assum-

ing immutable messages, the only way this could be violated

is if the counter might decrement its local value. This will not

occur for reasonable implementations of an increment-only

counter. So as long as every value sent to the manager is

already no larger than its local count (trivially true if it sim-

ply always sends exactly its current count at that time), this

two-state invariant [29] — an invariant on how any two suc-

cessive states are related — holds. This means every time the

manager receives an update from the counter, it can safely

update its local cached copy and preserve the invariant.

Making this informal argument formal requires support-

ing a few key styles of reasoning:

• The invariant of the manager must be able to mention

state of the counter

• Some part of the proof must be able to check that

the manager’s invariant is stable with respect to the

behavior of the counter

• Some part of the proof must check that the counter

only sends true lower bounds

• Messages from the counter with lower bounds must

also communicate the lower bound property

This actually permits a wide range of formalizations. Ideally,

though, the local proof of the manager’s code should not

concern itself directly with the details of the counter’s local

behavior: the only things the manager’s proof must know
locally are (1) the lower bound and (2) the fact that the lower

bound remains a lower bound (it does not necessarily need to

know why). An intuitive adaptation of classic rely-guarantee

techniques would require the manager’s proof to explicitly

contain a bound on the counter’s behavior and check stability

of the lower bound assertion. Alternatively, an intuitive adap-

tation of something like rely-guarantee references [19, 20]

to actor references would do the same, exposing summaries

of the counter’s possible state changes to the manager. But

Vafeiadis [43] showed there are a range of possible ways to

organize stability checks in rely-guarantee-style systems. So

we would prefer to shift the burden of stability checks — and

therefore, all explicit knowledge of the counter’s behaviors
— to the proofs of the counter itself.
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We would like to take the following high-level approach:

1. Extend the assertion language over local state with a

way to talk about an assertion true at another actor

2. Equip each actor with a binary relation that upper-

bounds how its receive method changes its local state
3. Require any proofs that something is true at a particu-

lar actor to originate with that actor

4. Allow actors to attach logical claims to messages

5. Require actors to “promise” any logical claim sent in a

message will be upheld

3 Hybrid Logic for Actors
Modal logics are logics that study some form of contingent
truth, with operators reflecting that something may not cur-

rently be true, but may be true in a different circumstance,

time, or place. The classic example is themodal logic of neces-

sity, where □𝑃 means 𝑃 is necessarily true. Modal logics play

an outsized role in program verification, because execution of

program fragments corresponds to constructing alternative

situations, in which different claims about program state may

be true. This includes temporal logic [37], as well as standard

program logics. Dynamic logic [16, 22, 38] includes a modal-

ity indexed by programs: [𝛼] (𝑃) is the statement that 𝑃 is true

after executing program 𝛼 — it is true in exactly those states

where executing 𝛼 will make 𝑃 true, making it equivalent to

the weakest precondition [11] of𝛼 with respect to 𝑃 . This can

be exploited for verification directly [1], or used to recover

Hoare triples: {𝑃}𝐶 {𝑄} is representable in dynamic logic as

𝑃 → [𝐶] (𝑄) — that the precondition 𝑃 implies that after ex-

ecuting𝐶 ,𝑄 will be true. This is how Iris [27] derives triples.

A class of modal logics that has not, to the best of our

knowledge, been exploited in verification is that of hybrid
logic [6, 17, 18]. Hybrid logics extends a modal logic’s lan-

guage of propositions with two key ideas. Nominals ] ∈ N
uniquely identify points in a model (e.g., a particular state),

so there is exactly one point in the model where a nominal

] is true. Satisfaction operators are modal operators indexed

by nominals, which enable claims about the truth of another

proposition at some arbitrary point in the model identified

by a nominal: @] (𝑃) asserts that 𝑃 is true in the (unique)

state identified by the nominal ].

This style of reasoning seems well-suited to reasoning

about actors: nominals correspond to the existing notion of a

reference to a specific actor, so @] (𝑃) would then represent

the assertion that 𝑃 was true of the local state of actor ].

This section outlines an approach to making this idea useful

for verifying actor programs subject to some simplifying as-

sumptions. So for example, the invariant of themanager from

Section 2 could be characterized as∃𝑣 . 𝑏 = 𝑣∧@𝑐 (𝑣 ≤ 𝑐𝑜𝑢𝑛𝑡),
assuming local variable 𝑏 at the manager holds logical value

𝑣 (valid in both actors’ states), and at the counter (nominal

𝑐) this logical value is a lower bound.

Of course, hybrid logic’s satisfaction operators by them-

selves assume all possible states are named by nominals,

which would correspond to a single global program state

with many actors. To reason about actor programs we must

combine this with the ability to model program changes —

in this case, dynamic logic. This leads to model / program

states consisting of sets of individual actor states, where the

truth of a proposition depends on both the general program

state and (informally) a choice of which actor’s point of view

to adopt when interpreting propositions — so an actor’s code

will be verified from the “point of view” of that actor. From

a modal logic perspective, this makes our endeavor a kind

of 2-dimensional modal logic [40], with different modalities

acting on different aspects of states.

3.1 A Multi-Dimensional Multi-Modal Model
We will give a Kripke model for a combined dynamic logic

of actors’ message handlers with hybrid logic to model each

others’ state. In modal logics, Kripke models are commonly

used to give semantics to a logic. They consist of a set𝑊 of

worlds and a family of binary relations on worlds describing

their relationships. Worlds are intuitively the set of “situa-

tions” in which the truth of a formula may be considered —

in our case, program states. The relations are used to give

semantics to modal assertions that relate different states. In

dynamic logics like ours, these correspond to programs that

may modify program state.

We assume a universe R of actor references as nominals.

We assume a basic propositional dynamic logic for purely-

local actions (i.e., no send primitives) over a local state LState =
Var ⇀ Nat ∪ R, whose commands are drawn from 𝛼 ∈
Primitive, with (possibly-non-deterministic) command se-

mantics given as J−K : Primitive → BinRel(LState). In our

examples we assume this set of primitives includes assign-

ment between variables and basic arithmetic expressions.

We construct our models M = ⟨𝑊,𝑅𝐶∈Command⟩ accord-
ing to Figure 1. A world (program state) is an R-indexed
finite set of actor states. An actor state is a triple of a local

state (LState as above), a set of messages the actor has sent

(message type, destination, and value), and a binary relation

giving an upper bound on any local behavior theymight have

— the guarantee relation of each actor. Our semantics will

only collect messages sent: in distributed settings, networks

may reorder, duplicate, or drop messages, so we only enforce

that if a message is delivered, then it was previously sent.

The transition relation is indexed by a particular command

and a particular actor: 𝑅𝐶 (]) relates pre- and post-states of

a particular actor referenced by ] executing command 𝐶 .

This updates the state of the actor in question differently

than those of other possible actors: the state of the actor

that is assumed to execute 𝐶 is updated in accordance with

𝐶’s local semantics. Each other actor’s state is updated in

some way corresponding to the reflexive transitive closures

of its guarantee relation, possibly also sending messages.
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𝑊 = R ⇀ ((LState × set (Token × R × (Nat ∪ R)})) × BinRel(LState))

𝑅𝐶 (]) =
{
(𝑊,𝑊 ′)

���� dom(𝑊 ) = dom(𝑊 ′)∧
(∀] ′, 𝑠, 𝑔.𝑊 (] ′) = (𝑠, 𝑔) ⇒ ∃𝑠 ′.𝑊 ′(] ′) = (𝑠 ′, 𝑔) ∧ (if (] = ] ′) then (𝑠, 𝑠 ′) ∈ J𝐶K else (𝑠, 𝑠 ′) ∈ (𝑔∗× ⊆))

}
Jsend(𝑡, 𝑥,𝑦)K(𝑙,𝑚) = (𝑙,𝑚 ∪ (𝑡, 𝑙 (𝑥), 𝑙 (𝑦))) J𝐶;𝐶 ′K = {(𝑎, 𝑐) | ∃𝑏. (𝑎, 𝑏) ∈ J𝐶K ∧ (𝑏, 𝑐) ∈ J𝐶 ′K}

Figure 1. Kripke model for an actor-based hybrid modal logic.

M,𝑤, ] ⊨ true always
M,𝑤, ] ⊨ 𝑃 ∨𝑄 ⇔ M,𝑤, ] ⊨ 𝑃 or M,𝑤, ] ⊨ 𝑃
M,𝑤, ] ⊨ 𝑃 ∧𝑄 ⇔ M,𝑤, ] ⊨ 𝑃 andM,𝑤, ] ⊨ 𝑃
M,𝑤, ] ⊨ ¬𝑃 ⇔ M,𝑤, ] ⊭ 𝑃
M,𝑤, ] ⊨ ActorRef (𝑥) ⇔ 𝑤 (𝑥) ∈ (R ∩ dom(𝑤))
M,𝑤, ] ⊨ ] ′ ⇔ ] = ] ′

M,𝑤, ] ⊨ @]′ (𝑃) ⇔ stable(𝑤, ] ′, 𝑃) ∧M,𝑤, ] ′ ⊨ 𝑃
M,𝑤, ] ⊨ Guar(𝑔) ⇔ ∃𝑠, 𝑔′.𝑤 (]) = (𝑠, 𝑔′) ∧ 𝑔 = 𝑔′

M,𝑤, ] ⊨ [𝐶] (𝑃) ⇔ ∀𝑤 ′ ∈ 𝑅𝐶 (]).M,𝑤 ′, ] ⊨ 𝑃
M,𝑤, ] ⊨ ∃𝑥 . 𝑃 ⇔ for some 𝑣,M,𝑤, ] ⊨ 𝑃 [𝑥 ↦→ 𝑣]
M,𝑤, ] ⊨ ∀𝑥 . 𝑃 ⇔ for any 𝑣,M,𝑤, ] ⊨ 𝑃 [𝑥 ↦→ 𝑣]
M,𝑤, ] ⊨ 𝑥 ≤ 𝑛 ⇔ 𝑤 (]) (𝑥) ≤ 𝑛

M,𝑤, ] ⊨ 𝑥 = 𝑣 ⇔ 𝑤 (]) (𝑥) = 𝑣

M,𝑤, ] ⊨ 𝑥 ≤ 𝑦 ⇔ 𝑤 (]) (𝑥) ≤ 𝑤 (]) (𝑦)
M,𝑤, ] ⊨ 𝑥 = 𝑦 ⇔ 𝑤 (]) (𝑥) = 𝑤 (]) (𝑦)
M,𝑤, ] ⊨ 𝑥 = 𝑦 ⊕ 𝑣 ⇔ 𝑤 (]) (𝑥) = 𝑤 (]) (𝑦) ⊕ 𝑣

where stable(𝑤, ], 𝑃) =
∀𝑤 ′.𝑤 ′ = 𝑤 [] ↦→ (𝑠 ′, 𝑔) | 𝑠 (]) = (𝑠, 𝑔) ∧ (𝑠, 𝑠 ′) ∈ 𝑔] ⇒

M,𝑤 ′, ] ⊨ 𝑃

Figure 2. Semantics of assertions

We build the full programming language by specifying the

set 𝐶 ∈ Command ::= 𝛼 | send(𝑡, 𝑥,𝑦) | 𝐶;𝐶 . Sends accept
a Token indicating the message type (used to select which

invariants are intended to hold at the sender, in terms of the

value sent), and their semantics add the message to the set

of messages sent by the current actor. We lift the semantics

of primitives to operate on a pair of LState and message

sets. Sequential composition’s semantics is the relational

composition of the nested command semantics. For brevity

we omit loops and assume primitives include conditional

updates (guarded [11] primitives).

This allows us to define the semantics of assertions in

our language, relative to both a global state and a particular

actor; Figure 2 defines the relation M,𝑤, ] ⊨ 𝑃 which is read

as “in model M, when considering truth from global state

𝑤 ∈𝑊 and actor ], 𝑃 is considered true.” Standard assertions

are defined in the standard way (e.g., 𝑃 ∨𝑄 is true if either

𝑃 or 𝑄 is true). We include an assertion that a certain value

is a valid actor reference. Actor references may be used as

assertions, asserting that the code is running in the named

actor (the standard interpretation of nominals).

The key case in the semantics is the interpretation of

@] (𝑃). This requires, as suggested in Section 2, that 𝑃 be

true from the viewpoint of actor ] (note the change in actor

reference when checking 𝑃 in that case). It also requires 𝑃 to

be stable. This stability check has the same intuitive meaning

as in traditional rely-guarantee reasoning (that 𝑃 ’s truth is

preserved by changes within an upper bound), but notice

that this check occurs in the semantics of assertions rather
than in the proof theory of the logic. This means that proofs

(1) do not need to concern themselves with stability checks

for other actors’ satisfaction assertions, and (2) do not even

need to know what other actors’ guarantees are!

From the perspective of the model, the assertion carries its

own stability proof with it. Of course, stability must still be

proven somewhere (in the rule for introducing a satisfaction

assertion). Themodel’s stability check has additional subtlety.

Notice that it only checks stability (directly) with respect to

changing the single actor’s local state: the check is that the

actor where 𝑃 is true cannot perform any local action that

invalidates 𝑃 . Critically, this restriction allows us to give rules

for introducing a satisfaction assertion that are also local

to a single actor. If 𝑃 contains further satisfaction operators

referring to truth at other actors, those assertions’ stability is
already guaranteed separately, and these nested assertions’

stability proofs for other actors’ assertions can be combined

with that for 𝑃 ’s stability at ] to show all actors preserve 𝑃 .

The assertion Guar(𝑔) asserts that 𝑔 under-approximates

the local actor’s guarantee. This is used in every proof rule

for every primitive: in addition to handling the logical conse-

quences of each primitive on what assertions are true, each

action must fall within the guarantee.

The class of assertions [𝐶] (𝑃) are standard for dynamic

logic, adapted to our non-standard model: it asserts that 𝑃

should be true — at the same actor — after executing com-

mand 𝐶 . We include universal and existential quantification,

though we assume quantified variables are distinct from

program variables. Finally we assume a range of basic propo-

sitions with their natural meanings, a subset of which are

shown in Figure 2.

3.2 A Multi-Dimensional Modal Logic
Figure 3 gives selected natural deduction rules of our logic,

where Γ ranges over sets of propositions. We elide most

rules for reasons of space and to focus on the novel aspects

of our work, but they are standard for natural deduction pre-

sentations of dynamic logic [25]; readers less familiar with

dynamic logics but familiar with classic Hoare logic [24]

would find no surprises after adjusting to the different judg-

ment form. To give some sense for those more comfortable
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Seq

Γ ⊢ [𝐶] [𝐶 ′] (𝑃)
Γ ⊢ [𝐶;𝐶 ′] (𝑃)

Γ [𝑥 ↦→ 𝑥0], 𝑥 = (𝑡 [𝑥 ↦→ 𝑥0]) ⊢ 𝑄 Γ ⊢ Guar(𝑔) J𝑥 := 𝑡K ⊆ 𝑔

Γ ⊢ [𝑥 := 𝑡] (𝑄)
@-T

Γ ⊢ @] (])
@-Pure

⊢ 𝑃
Γ ⊢ @] (𝑃)

@-K

Γ ⊢ @] (𝑃)
Γ ⊢ @] (𝑃 → 𝑄)

Γ ⊢ @] (𝑄)
@-I

Γ ⊢ Guar(𝑔) Γ ⊢ 𝑃
Γ ⊢ ] Stable(𝑔, 𝑃)

Γ ⊢ @] (𝑃)
@-E

Γ ⊢ ] Γ ⊢ @] (𝑃)
Γ ⊢ 𝑃

Send

Γ ⊢ ] Γ ⊢ 𝑃 Γ ⊢ ActorRef (𝑥)
Γ ⊢ 𝑦 = 𝑣 Γ ⊢ I(𝑡) (], 𝑣)

Γ ⊢ [send(𝑡, 𝑥,𝑦)] (𝑃)
Figure 3. Selected rules for verifying actors

with Hoare logics, we consider the rule for sequential com-

position (Seq), which decomposes proofs about a sequential

composition into proofs about each of the sequence com-

mands (just as in Hoare logic). We also show one primitive

rule, for assignment; this is the dynamic logic version [25]

of Hoare’s axiom of assignment [24], using substitution to

handle where the right hand side mentions the variable be-

ing assigned, and additionally modified to ensure the action

satisfies the local guarantee.

Standard for hybrid logic, a nominal is always true at the

corresponding location (@-T) — here, an actor is always itself.

@-Pure allows the injection of a fact that is true under no

assumptions into a satisfaction modality. By itself this is not

a terribly useful rule, but it works well in conjunction with

the next rule. @-K is a restricted form of the typical axiom

K from modal logics, which allow applying modus ponens

to draw inference under a modality: intuitively if 𝑃 is true

at ], and 𝑃 → 𝑄 is true at ], then 𝑄 must also be true. This

is where @-Pure becomes useful: it makes it easy to inject

“common-sense” implications into the satisfaction modality

for a different actor, to draw further inferences from any

assertions that other actor may have sent.

@-I is key: it introduces satisfaction assertions. It says that

assuming 𝑃 is true at the current actor (Γ ⊢ ]), and 𝑃 is also

stable with respect to the current guarantee, then it can be

concluded that@] (𝑃). Its dual @-E is an elimination rule for

satisfaction: if 𝑃 is true at ], and ] is the current actor, then 𝑃

is true at the current actor.

Finally the Send rule permits sending messages to other

actors, if the invariant I(𝑡) (], 𝑣) for that message type can

be proven of the data sent. This might include basic validity

constraints (e.g., that a number to increment should be non-

negative), or the requirement that the sender has witnessed

some fact (like a value being a lower bound of a counter).

The invariant for each message type 𝑡 leaves the sender and

data sent open, so it may be checked on the sender side and

assumed on the recipient’s side. We require that message

invariants do not mention program variables outside satisfac-

tion operators, which prevents the recipient from assuming

random constraints on its local state.

Theorem 3.1 (Local Soundness). The logic is sound: For all Γ,
𝑄 ,M,𝑤 , and ] ∈ dom(M), if Γ ⊢ 𝑄 and ∀𝑃 ∈ Γ.M,𝑤, ] ⊨ 𝑃 ,
thenM,𝑤, ] ⊨ 𝑄 .

Proof. By induction on the derivation Γ ⊢ 𝑄 . For a simple

example consider Seq: there the assumptions and induction

hypotheses give that M,𝑤, ] ⊨ [𝐶] [𝐶 ′] (𝑃), and the case

requires proving M,𝑤, ] ⊨ [𝐶;𝐶 ′] (𝑃). Because the seman-

tics of the latter are given by relational composition of the

semantics for 𝐶 and 𝐶 ′
this is straightforward (including ad-

ditionally dealing with repetition of the guarantee on other

actors’ states, and the growth in their message sets). More

interesting are the cases for @-K and @-I. For the former,

the antecedents give that 𝑃 and 𝑃 → 𝑄 are true at some

other actor; the assertion semantics for those assertions es-

sentially allow repeating the reasoning for the basic modus

ponens rule, but at a different actor, and additionally combin-

ing the stability information from the model interpretation

of the antecedents to show stability of 𝑄 . For the latter, the

antecedents □

3.3 Actor Correctness
We have yet to actually define what an actor is in our formal

model. We view an actor as a set of handler routines, one for

any message class (i.e., Token) the actor wishes to handle:

Actor = Token ⇀ Command. An actor specification is a pair

(𝜙,𝑔) of an invariant over the actor’s state and the actor’s

local guarantee. We say an actor 𝐴 is correct with respect

to specification (𝜙,𝑔) under token invariants I — written

I ⊢ 𝐴 : (𝜙,𝑔) when:
∀], 𝑡 ∈ dom(𝐴).
] ∧ 𝜙 ∧ Guar(𝑔) ∧ I(𝑡) (𝑠, 𝑣) ∧ 𝑥 = 𝑠 ∧ 𝑦 = 𝑣 ⊢ [𝐴(𝑡)] (𝜙)

I ⊢ 𝐴 : (𝜙,𝑔)
We can extend this to correctness of a uniquely-labeled set

of actors with a group specification T mapping actor names

to actor specifications:

∀(], 𝐴) ∈ A . ∃𝜙,𝑔. T (]) = (𝜙,𝑔) ∧ I ⊢ 𝐴 : (𝜙,𝑔)
I ⊢ A : T

This is sound with respect to interleaved handler-at-a-

time semantics of a system of actors: assuming that initially

every actor’s invariant holds, all message invariants (from

I) hold at the sender for every message in the state, and the

guarantees in T under-approximate the guarantees of each

actor, then executing any actor’s handler for any message

that has been sent to it (i.e., is in the message output set of

some other actor) will lead to another state where all local



AGERE ’19, October 22, 2019, Athens, Greece Colin S. Gordon

invariants hold, T underapproximates the guarantees, and

all message invariants hold (including for new messages).

Because our semantics is data-race free by construction, this

is then equivalent to interleaving execution at a statement

granularity as well.

3.4 Counters, Formally
We can model the example of Section 2 formally. Assume:

Token = LowerBound | IncRequest
I(LowerBound) (𝑥,𝑦) = ∃𝑣 . 𝑦 = 𝑣 ∧@𝑥 (𝑣 ≤ 𝑐)
I(IncRequest) (𝑥,𝑦) = ActorRef (𝑥) ∧ 0 ≤ 𝑦

Then we can model the counter’s one handler as:

c := c + y;

send(LowerBound , self , c)

And we can verify I ⊢ Counter : (0 ≤ 𝑐, 𝑐 ≤ 𝑐 ′) with
the single derivation in Figure 4, taking 𝜙 as the invariant.

Likewise, we can model the manager handler that receives

updates from the counter as:

when (x=cntr ∧ lb < y) : lb := y;

The manager code may be verified similarly, though we omit

the derivation for space:

I ⊢ Manager :(
(∃𝑣 . 𝑙𝑏 = 𝑣 ∧@cntr (𝑣 ≤ 𝑐)),
(𝑙𝑏 ≤ 𝑙𝑏 ′ ∧ 𝑐𝑛𝑡𝑟 = 𝑐𝑛𝑡𝑟 ′ ∧ ∃𝑣 . 𝑙𝑏 ′ = 𝑣 ∧@cntr (𝑣 ≤ 𝑐))

)
As intended, neither actor’s verification requires any rela-

tional description of any other actor’s behavior — all knowl-

edge of other actors comes from satisfaction operators, which

witness either tautologies proven without assumptions (and

therefore trivially true at all actors), or informationwitnessed

to be stable by the actor where it is true (as in the use of @-I

in the counter’s proof).

4 Working with Satisfaction in Dafny
This section gives a nearly-complete encoding of the logic

into Dafny, a C#-like language with integrated support for

program verification, to support our claim that this is a light-
weight extension to sequential reasoning principles. We also

highlight where additional modifications would be required

(such as object or reference immutability, or additional ver-

ification checks) to make the implementation sound. We

assume typed asynchronous actors, as in a variant of Typed

Akka [30].
1
An object of type ActorRef <M> is a handle to

a particular actor in the system, which can be sent messages

of type M. Figure 5 models satisfaction assertions as a higher-

order predicate. We tweak the theory to allow an actor to

only allow some of its state — which we call publicly acknowl-
edged — to be referenced by other actors’ assertions. This is

akin to committing to a public interface for assertions about

that actor — state that is not publicly-acknowledged can

1
Dafny lacks a mechanism like Java’s instanceof to discover more pre-

cise types for an object.

be refactored or removed without invalidating other actors’

assertions. at<T,M>(i,p) is an assertion that the actor

referred to by actor reference i (of type ActorRef <M>)
exposes publicly-acknowledged state of type T, for which
p is true — if x is the acknowledged state of the actor at i,
then p(x) evaluates to true.

The next two pieces of code are two lemmas (really ax-

ioms), which in Dafny take the form of computationally-

irrelevant methods. The preconditions of these “methods”

are antecedents in an implication, and the postconditions

are the conclusion of the lemma. atImpl (“at-implication”)

models a combination of @-Pure and @-K from the logic.

The extra preconditions ensure that the conclusion (𝑄) is

well-defined whenever the assumption (𝑃 ) is well-defined.

The .requires clauses refer to the precondition of the

predicates P and Q; they are logical functions that may be

applied to specific inputs (or in this case, all inputs), and so

may have their own preconditions.
2 atImpl is axiomatized

as a lemma (and later, explicitly invoked when verifying

actors) because we have not taught Dafny’s translation to

Boogie about at assertions.
3
Such a modification would be

desirable, but for now it also has the pedagogical benefit of

highlighting where extra at-related reasoning is required.

Figure 5 gives the declaration for the base Actor class

we assume, which is a simplification of the interface used

by Akka. The guarantee G() is given as a two-state [29]

predicate — a binary relation on states written in terms of

an “old” and “new” state, used to constrain how state may

change during execution. Akka actors have a self reference

that is the actor reference for the current actor. We assume

actors also carry a distinguished explicit representation of

their own state, some actor-specific invariant (a single-state

predicate), a method for sending messages to actors, and

a method receive which handles all messages — and thus

assumes andmust re-establish the actor’s invariant, andmust

ensure the updates performed adhere to G() .
Dafny’s twostate invariants are useful for specifying

guarantees, but when asserting a two-state invariant in a

method, the old version of the state used for the check is

always the state at method entry: this encoding into Dafny

does not enforce that every atomic action obeys the guar-

antee, only that the aggregate effects of the receive handler

do. This makes it possible in this encoding for a counter to

increment the counter by 500, send that as a lower bound,

then decrement by 499. The net effect of these updates is still

an increment. Even asserting G() between every statement

permits this, as even after the decrement the value is still

2
This was not required when defining at because that definition did not

explicitly apply the predicate to any arguments.

3
Experts in Dafny or dynamic frames may notice that at has no reads
clause indicating which heap cells its truth relies on. This is intentional:

its introduction is restricted to stable predicates, whose stability is en-

forced elsewhere, and need not be checked explicitly when manipulating

at assertions.
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. . . ⊢ self . . . ⊢ 𝜙 . . . ⊢ ActorRef (𝑥)
. . .

. . .

. . . ⊢ @self (𝑐 ≤ 𝑐)
@-I

. . . ⊢ ActorRef (𝑥) ∧ Number(𝑐) ∧@self (𝑐 ≤ 𝑐)
∧-I

self ∧ 0 ≤ 𝑐0 ∧ Guar(𝑐 ≤ 𝑐 ′) ∧ ActorRef (𝑥) ∧ 0 ≤ 𝑦 ∧ 𝑐 = 𝑐0 + 𝑦 ⊢ [send(LowerBound, 𝑥, 𝑐)] (𝜙)
Send

self ∧ 0 ≤ 𝑐 ∧ Guar(𝑐 ≤ 𝑐 ′) ∧ ActorRef (𝑥) ∧ 0 ≤ 𝑦 ⊢ [𝑐 := 𝑐 + 𝑦] [send(LowerBound, 𝑥, 𝑐)] (𝜙)
Assign

self ∧ 0 ≤ 𝑐 ∧ Guar(𝑐 ≤ 𝑐 ′) ∧ ActorRef (𝑥) ∧ 0 ≤ 𝑦 ⊢ [𝑐 := 𝑐 + 𝑦; send(LowerBound, 𝑥, 𝑐)] (𝜙)
Seq

Figure 4. Proving correctness of the counter actor

larger than it was initially. This is one place Dafny (or a sim-

ilar system) would require change to soundly implement our

calculus (essentially, the guarantee check from the axiom

rule is not performed here). However, since Dafny already

includes two-state predicates, the change would be to en-

force the existing checks between more pairs of states, not

building new functionality. This would affect the program-

ming model, but is within the reach of current verification

systems.

Readers may have noticed that the method signature for

sending messages is not as restrictive as that in the Send

rule in Section 3. Instead of directly encoding the invariant

map I from the formal calculus, we provide a Witness
class to bundle data and assertions when sending messages.

The implementations can choose the invariant over their

data, which necessarily includes an actor reference to the

sender and thanks to the reads this clause is required to

only mention message state. This is how we impose stability

proofs and control introduction of satisfaction assumptions

(i.e., @-I) as well. Witnesses have a method stability
that must prove stability of the message’s predicate with re-

spect to the given actor’s guarantee. The witness constructor

accepts a direct object reference to the actor that will send
the message, from which all state is accessible. Implementa-

tions of Witness will choose more selective preconditions

depending on the predicate, and must prove the predicate

holds at that actor. Typically the only way to do this is for an

actor to establish some fact about its state locally, and pass

itself (this) into the witness constructor. The constructor

can then use the introAt (@-I) axiom to convert this in-

formation into a satisfaction assertion. Recipients, instead

of having complex preconditions on receive, can simply use

the postcondition of the static Unpack method.

This touches on the other class of extensions Dafny would

require to soundly implement our calculus, which is some-

thing akin to the reference immutability type systems already

present in some actor systems [8, 21]. Two things could go

awry with this Witness construction in Dafny today: the

constructor could use Unpack itself to prove the satisfac-

tion assertion without sufficient evidence, or an actor could

send the object reference to itself to another actor, enabling

data races (and specifically, letting another actor observe

possibly-unstable properties). Reference immutability could

fix both issues, as well as enforcing message immutability:

the signatures for sending or unpacking Witnesses could
be refined to require deeply-immutable inputs. This prevents

actors from sending their own this reference, since that

reference must be mutable in the receive handler. It also pre-

vents a Witness constructor from using Unpack , since
the receiver would be mutable inside the constructor. Actor

code would then need to freeze the witness after construc-
tion, send it as immutable, and the recipient could then use

Unpack .4

4.1 Counter and Manager in Dafny
If this sounds very abstract, seeing code for the counter and

manager examplemay help. Both are implemented asmodule

refinements of the DafnyActor module. The counter also

refines the witness, whose constructor accepts a (counter)

actor and copies out the current value as a new lower bound,

establishing the witness predicate. The stability lemma in-

cludes a workaround to state that the lower bound of the

witness does not change; Dafny lacks a way to specify that

all fields of an object remain the same after construction, but

an extension with reference immutability could assume this.

The counter actor itself has the expected behavior: its mes-

sage handler replies to the sender with a new witness for the

lower bound. Both actors have the invariants and guarantees

from Section 3.4. The manager unpacks the witness to be

able to assume the message contains a lower bound, and uses

atImpl to guide Dafny’s unmodified core to transfer this

to a new lower bound. A slightly elaborated version of this

code is available online.
5

4.2 Generality
The approach taken here could be adapted to any sequential

verification system capable of encoding (or being extended

to encode) guarantee relations, stability checks, higher-order

predicates, immutability, and checks that every individual

step satisfies the guarantee. Liquid Haskell [46] and KeY [1]

can encode all but the last natively; we considered them

for our axiomatization experiment, but Haskell has no well-

established actor framework to mimic (with an eye towards

4
This ignores the opportunity to send externally unique object graphs safely

between actors, but this could also be accommodated: mutable references

in these systems cannot be considered externally unique, either.

5https://gist.github.com/csgordon/b9173c2b28099e8353c36eb19c058691

https://gist.github.com/csgordon/b9173c2b28099e8353c36eb19c058691
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class { : extern} ActorRef <Ms> {}

predicate at <T,Ms >(i : ActorRef <Ms>, p : (T { bool))

lemma atImpl <T,M>(c : ActorRef <M>,

P : T{ bool , Q : T{ bool)

requires ∀ x : T • P.requires(x) =⇒ Q.requires(x)

requires ∀ x : T • P.requires(x) =⇒ P(x) =⇒ Q(x)

ensures at(c, P) =⇒ at(c, Q)

/* Utility class for packing a sender & message */

class MsgBox <T,U> {

var sender : ActorRef <T>

var msg : U

constructor(s : ActorRef <T>, m : U) {

sender := s;

msg := m;

} }

abstract module DafnyActor {

type State

type Msgs

twostate predicate stable(a : Actor ,P : State{ bool)

reads a, P.reads {

(old(P.requires(a.state)∧P(a.state))∧a.G())
=⇒ (P.requires(a.state))∧P(a.state)

}

class Actor {

twostate predicate G() reads this

function method self() : ActorRef <Msgs >

reads this

var state : State

constructor { : extern} () ensures inv()

predicate inv() reads this

method send <T>(dest : ActorRef <T>, msg : T)

method receive(message : Msgs)

modifies this

requires inv()

ensures inv()

ensures G()

}

class Witness {

var loc : ActorRef <Msgs >

predicate P(s : State) reads this

twostate lemma stability(x : Actor)

ensures stable(x, P)

constructor(r : Actor)

ensures P(r.state) ∧ at(r.self(), P)

lemma introAt(r : Actor)

requires r.self() = loc ∧ P(r.state)

ensures at(r.self(), P)

{ assume at(r.self(), P); }

static method Unpack(w : Witness)

ensures at(w.loc , w.P)

{ assume at(w.loc , w.P); }

} }

Figure 5. Core Dafny definitions of satisfaction modality, id-

iomatic combination of @-Pure with @-K, and actor classes.

module CounterMod refines DafnyActor {

type State = nat

type Msgs = MsgBox <Witness ,nat >

class Witness {

var lb : nat

predicate P(s : State) { lb ≤ s }

twostate lemma stability(x : Actor)

ensures stable(x, P) {

assume lb = old(lb);// Immutability workaround

}

constructor(r : Actor)

ensures P(r.state) ∧ at(r.self(), P) {

lb := r.state;

loc := r.self ();

new;

introAt(r);

} }

class Actor {

constructor () ensures inv() { state := 0; }

twostate predicate G() reads this {

old(this.state) ≤ state

}

predicate inv() { 0 ≤ this.state }

method receive(message : Msgs) {

state := state + message.msg;

var w := new Witness(this);

send(message.sender , w);

} } }

module ManagerMod refines DafnyActor {

type State = nat

type Msgs = CounterMod.Witness

class Actor {

var child :

ActorRef <MsgBox <CounterMod.Witness ,nat > >

twostate predicate G() reads this {

old(child)=child ∧ old(state) ≤ state ∧
at(child , (s : nat) reads this ⇒ state ≤ s)

}

predicate inv() {

at(child , (s : nat) reads this ⇒ state ≤ s)

}

method receive(message : Msgs)

{

var sender := message.loc;

CounterMod.Witness.Unpack(message );

atImpl(sender , message.P,

(s : nat) reads message ⇒ message.lb ≤ s);

if (sender = child ∧ state < message.lb) {

state := message.lb;

atImpl(child ,

(s : nat) reads message ⇒ message.lb ≤ s,

(s : nat) reads this ⇒ this.state ≤ s);

}

} } }

Figure 6. Dafny code for Counter and Manager
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extraction of verified actors), and KeY’s specification lan-

guage has great power at the cost of great verbosity. There

are known extensions to KeY’s foundations that support the

required guarantee checks as well [4], but they are not imple-

mented in KeY. Alternatively, construction of a verification

tool for a language like Pony that already has reference im-

mutability [8] would require only small extensions beyond

standard sequential verification tools.

5 Related Work
Some related work was addressed earlier in the course of

presenting background material for our technical develop-

ment. This section focuses on two further clusters of related

work: means of proving correctness for actor programs, and

related variants of dynamic and/or hybrid logic.

Actor Correctness There are many possible approaches to

verifying actor programs. The most successful work in this

space has been the use of reference capabilities to prevent

data races [2, 8, 21] or ordering races [3] in actor systems, but

these are only capable of controlling interference between

actors, not of proving any sort of invariants.

Work on static analysis on actor programs [9, 14, 41] gen-

erally requires analysis of a closed program — one where all

actors appear — rather than analyzing open programs con-

sisting of some actors but not all (as required for separately

verifying libraries). Recently Desai et al. [10] addressed the

open program issue by modeling actors and an environment

abstraction as input/output automata [31], then performing

automata-theoretic refinement checking against an abstract

specification. We are unaware of work applying program

logics specifically to actor programs.

Most work on rely-guarantee reasoning separates rely and

guarantee relations (even in work that uses transition sys-

tems rather than binary relations [27, 35, 42]). In general this

makes sense, as different threads may have asymmetric roles

(e.g., producer and consumer threads) in a shared-memory

setting. The cost of this is that every thread’s proof must

reason explicitly at times about other threads’ behavior. We

made a specific choice to encapsulate all relational specifi-

cation of an actor (its guarantee relation) to the actor itself.

In principle one could imagine providing separate rely and

guarantee relations, where different handles to each actor

granted the holder the rights to send different messages af-

fecting the recipient’s state differently, in a manner similar

to rely-guarantee references [19, 20] or rely-guarantee proto-

cols [33, 34]. This might grant additional verification power,

but at the cost of substantial complexity: rely relations for

even modest data structures (e.g., the union-find data struc-

ture studied by Gordon et al. [20]) can be quite complex,

and such an approach would require clients of an actor to

to check that their local assertions were stable with respect

to the rely relations specific to their handle to a peer actor.

This not only complicates the amount of reasoning actors

must do about each other, but hurts modularity as well: if

an actor makes some new action possible, any actor making

assumptions about it must have its stability proofs redone

even if all assertions it makes are stable.

Modal Logics As mentioned earlier, dynamic logic [38] is

a well-established form of weakest precondition approach to

imperative program correctness, underlying Hoare Logic in

a way that has fed into recent developments [1, 27]. Hybrid

logic is a smaller, but also well-established [6, 7] class of

modal logics. The logic we presented in Section 3 is a combi-

nation of these two forms of logic, technically classified as a

multi-dimensional modal logic [32], since the points at which

formulas are evaluated have internal structure with different

pieces addressed by different modalities in the logic. Our

model diverges from common practice in multi-dimensional

modal logics: while most 𝑛-dimensional modal logics take

points of formula evaluation to be 𝑛-tuples of a common

world state, our (2-dimensional) points of evaluation are het-

erogeneous: a collection of actors, and a choice of a particular

actor’s point of view.

There are many modal logics combining state change and

notions of place (e.g., spatio-temporal logics [5] or dynamic

epistemic logic [45]), but to the best of our knowledge we are

the first to propose using hybrid logic for places in dynamic

systems, or to address assertion stability in a dynamic logic.

Dynamic epistemic logic is probably most similar to our

work, as a combination of dynamic logic with epistemic logic
(logic of what participants have what knowledge). How-

ever, this branch of logic typically focuses on reasoning

about what knowledge is preserved across specific actions

that modify the world rather than limiting the logic to sta-

ble knowledge based on other restrictions on allowable ac-

tions. It typically also concerns global knowledge rather than

knowledge of facts about individuals, permitting inferences

such as “if 𝑎 knows 𝑃 , then I know 𝑃 ,” the equivalent of which

in our system would be “if 𝑃 is true at 𝑎, then 𝑃 is true here”

which is obviously incorrect if 𝑃 ’s truth depends on which

actor considers the formula.

6 Conclusions & Future Work
This paper outlines the core of an approach to enable deduc-

tive verification of actor systems with only modest exten-

sions beyond established techniques, and demonstrates some

promise, but the version presented here is limited. We have

not considered actor creation or use of “become” to switch

behaviors; both should be possible as long as the new behav-

iors satisfy the relevant guarantee. We have also not given

proofs about use of local actor state with heaps; the Dafny

prototype should be sound if extended so the only state that

could be mentioned in at assertions was immutable (e.g.,

immutable Witnesses), but further work is needed to both

prove this and determine if additional flexibility is possible.

We have also not considered failure and restarting of actors,
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which is likely to require some extension. Moreover, further

investigation of the technique’s practical limits are needed

to determine how broadly useful this approach is.
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